平均变化率与瞬时变化率概念

平均变化率与瞬时变化率概念

ID:14274399

大小:83.19 KB

页数:3页

时间:2018-07-27

平均变化率与瞬时变化率概念_第1页
平均变化率与瞬时变化率概念_第2页
平均变化率与瞬时变化率概念_第3页
资源描述:

《平均变化率与瞬时变化率概念》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、平均变化率与瞬时变化率概念1.已知函数f(x)=的图象上的一点及临近一点,则.2.质点运动规律为,则在时间中相应的平均速度为3、求在点x=1处的导数.4、求函数在处的导数4、一质点运动的方程为。(1)求质点在[1,1+Δt]这段时间内的平均速度;(2)求质点在t=1时的瞬时速度【课堂练习】1、已知函数,下列说法错误的是()A、叫函数增量B、叫函数在[]上的平均变化率C、在点处的导数记为D、在点处的导数记为2、若质点A按规律运动,则在秒的瞬时速度为()A、6B、18C、54D、813、设函数可导,

2、则=()A、B、C、不存在D、以上都不对4、函数在处的导数是______________5、已知自由下落物体的运动方程是,(s的单位是m,t的单位是s),求:(1)物体在到这段时间内的平均速度;(2)物体在时的瞬时速度;(3)物体在=2s到这段时间内的平均速度;(4)物体在时的瞬时速度。平均变化率达标检测:1.设函数,当自变量由改变到时,函数的改变量为(  )A   B   C  D 1.一质点运动的方程为,则在一段时间内的平均速度为()A -4  B -8  C 6 D -62.在曲线的图象上

3、取一点(1,2)及附近一点,则为(  )A   B   C   D 4.函数的平均变化率的物理意义是指把看成物体运动方程时,在区间内的    .5.函数的平均变化率的几何意义是指函数图象上两点、连线的    6.函数在处有增量,则在到上的平均变化率是       7.函数在附近的平均变化率是  8.物体按照s(t)=3t2+t+4的规律作直线运动,求在4s附近的平均变化率.导数的几何意义:【例】已知曲线,(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜

4、率为4的曲线的切线方程。分析:切点坐标切线斜率点斜式求切线方程解答:(1)上,且∴在点P(2,4)处的切线的斜率k==4;∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.(2)设曲线与过点P(2,4)的切线相切于点A(x0,),则切线的斜率,∴切线方程为()=(-),即∵点P(2,4)在切线上,∴4=2,即,∴,∴(x0+1)(x0-2)2=0解得x0=-1或x0=2故所求的切线方程为4x-y-4=0或x-y+2=0.(3)设切点为(x0,y0)则切线的斜率为k=x

5、02=4,x0=±2.切点为(2,4),(-2,-4/3)∴切线方程为y-4=4(x-2)和y+4/3=4(x+2)即4x-y-4=0和12x-3y+20=0注:(1)解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”;(2)解决“过某点的切线”问题,一般是设出切点坐标解决。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。