如何求三角函数的最小正周期

如何求三角函数的最小正周期

ID:14233652

大小:112.60 KB

页数:3页

时间:2018-07-27

如何求三角函数的最小正周期_第1页
如何求三角函数的最小正周期_第2页
如何求三角函数的最小正周期_第3页
资源描述:

《如何求三角函数的最小正周期》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、如何用初等方法求三角函数的最小正周期在三角函数中,求最小正周期是一个重要内容,有关求三角函数最小正周期的问题,供大家参考。一公式法函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)(A≠0,ω>0)的最小正周期都是;函数f(x)=Atan(ωx+φ)和f(x)=Acot(ωx+φ)(A≠0,ω>0)的最小正周期都是,运用这一结论,可以直接求得形如y=Af(ωx+φ)(A≠0,ω>0)一类三角函数的最小正周期(这里“f”表示正弦、余弦、正切或余切函数)。例1求下列函数的最小正周期:(1)f(x)=2sin(πx+1)。(2)f(x)=1-cos(4x)。(3)f(x)=tan(

2、x).f(x)=解:用T表示各函数的最小正周期,则:(1)T==T==T==3πf(x)的最小正周期和y1=1-2cot(2x-)的最小正周期相同,为T=二定义法根据周期函数和最小正周期的定义,确定所给函数的最小正周期。例2求函数f(x)=2sin(x-)的最小正周期。解:把x-看成是一个新的变量z,那么2sinz的最小正周期是2π。由于z+2π=x-=(x+4π)-。所以当自变量x增加到x+4π且必须增加到x+4π时,函数值重复出现。∴函数y=2sin(x-)的最小正周期是4π。例3求函数f(x)=

3、sinx

4、-

5、cosx

6、的最小正周期。3解:根据周期函数的定义,易知2π、π都是这个的周期

7、,下面证明π是这个函数的最小正周期。设0<T<π是这个函数的周期,则

8、sin(x+T)

9、-

10、cos(x+T)

11、=

12、sinx

13、-

14、cosx

15、   ①对于任意x∈R都成立,特别的,当x=0时也应成立。∴

16、sinT

17、-

18、cosT

19、=

20、sin0

21、-

22、cos0

23、=-1。但当0<T<π时,0<

24、sinT

25、≤1,0<

26、cosT

27、<1,故有-1<

28、sinT

29、-

30、cosT

31、≤1,矛盾,所以满足①且小于π的正数T不存在。故函数f(x)=

32、sinx

33、-

34、cosx

35、的最小正周期是π。三、最小公倍数法求几个正弦、余弦和正切函数的最小正周期,可以先求出各个三角函数的最小正周期,然后再求期最小公倍数T,即为和函数的最小正

36、周期。例4求下列函数的最小正周期:(1)f(x)=sin3x+cos5x(2)f(x)=cosx-sinx.(3)f(x)=sinx+tanx.解:(1)∵sin3x的最小正周期为T1=,cos5x的最小正周期为T2=。而和的最小公倍数是2π.∴f(x)的最小正周期为T=2π.(2)∵cosx的最小正周期为T1=,-sinx的最小正周期为T2=4π。而和4π的最小公倍数是12π。∴f(x)=cosx-sinx的最小正周期为T=12π.(3)∵sinx的最小正周期为T1=,tanx的最小正周期为T2=。而和的最小公倍数是70π。∴f(x)=sinx+tanx的最小正周期为T=70π.说明:几个

37、分数的最小公倍数,我们约定为各分数的分子的最小公倍数为分子,各分母的最大公约数为分母的分数。四图象法作出函数的图象,从图象上直观地得出所求的最小正周期。例5求下函数的最小正周期。(1)y=

38、sin(3x+)

39、3(2)y=

40、+sin2x

41、解:(1)先作出函数y=

42、sin(3x+)

43、的图象(见图1)观察图象,易得所求的周期为T=。(2)先作出y=

44、+sin2x

45、的图象(见图2)观察图象,易得所求的周期为T=π。五、恒等变换法通过对所给函数式进行恒等变换,使其转化为简单的情形,再运用定义法、公式法或图象法等求出其最小正周期。例6求下列函数的最小正周期:(1)f(x)=sin(x+)cos(x-)(

46、2)f(x)=sin6x+cos6x(3)f(x)=解(1)f(x)=sin(x+)cos(x-)=

47、sin2x+sin

48、=sin2x+∴最小正周期为T=π(2)f(x)=sin6x+cos6x=(sin2x+cos2x)(sin4x-sin2xcos2x+cos4x)=(sin4x-sin2xcos2x+cos4x)=(sin2x+cos2x)2-3sin2xcos2x=1-sin2x=+cos4x∴最小正周期为T=(3)f(x)===它与-cos2x的周期相同,故得f(x)的最小正周期为T=π3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。