多边形及其内角和 教学设1

多边形及其内角和 教学设1

ID:14216407

大小:861.00 KB

页数:6页

时间:2018-07-26

多边形及其内角和  教学设1_第1页
多边形及其内角和  教学设1_第2页
多边形及其内角和  教学设1_第3页
多边形及其内角和  教学设1_第4页
多边形及其内角和  教学设1_第5页
资源描述:

《多边形及其内角和 教学设1》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、多边形及其内角和教学设计(一)教学设计思路通过具体的图形来让学生更好的理解一些概念。对于多边形的内角和定理及其外角和定理要启发引导学生积极参与,一起分析、探究总结出所要的结论。通过例题来巩固这些知识点。教学目标知识与技能表述多边形的有关概念(内角、外角、对角线、凸多边形、凹多边形);探索并说出多边形的内角和与外角和公式;能根据多边形内角和公式与外角和公式求多边形内角的度数和多边形的边数;说出正多边形的概念,并能进行简单的应用和计算。进一步发展说理能力和简单的推理能力。过程与方法经历探索多边形内角和与外

2、角和公式的过程,实际测量,推理。情感态度价值观通过探索过程进一步体会知识点之间的联系;通过本节的学习进一步体会数学与现实生活的紧密联系。教学重点和难点重点是多边形的内角和定理。难点是学会善于运用三角形的有关知识来研究多边形的问题。能够灵活运用多边形内角和与外角和解决相关问题。教学方法启发引导、合作探究课时安排2课时教具学具准备投影仪或电脑、三角板教学过程设计第一课时(一)引入你能从图7.3—1中找出几个由一些线段围成的图形吗?(二)知识点我们学过三角形。类似地,在平面内,由一些线段首尾顺次相接组成的图

3、形叫做多边形(po1ygon)。多边形按组成它的线段的条数分成三角形、四边形、五边形……三角形是最简单的多边形。如果一个多边形由n条线段组成,那么这个多边形就叫做n边形。如图7.3—2,螺母底面的边缘可以设计为六边形,也可以设计为八边形。多边形相邻两边组成的角叫做它的内角。图7.3—3中的∠A、∠B、∠C、∠D、∠E是五边形ABCDE的5个内角。多边形的边与它的邻边的延长线组成的角叫做多边形的外角。图7.3-4中的∠l是五边形ABCDE的一个外角。连接多边形不相邻的两个顶点的线段,叫做多边形的对角线(

4、diagonal)。图7.3—5中,AC、AD是五边形ABCDE的两条对角线。特别提醒:n边形(n≥3)从一个顶点可引出(n-3)条对角线,把n边形分割成(n-2)个三角形,共有对角线条。例如:十边形有________条对角线。在这里n=10,就可套用对角线条数公式(条)。如图7.3—6(1),画出四边形ABCD的任何一条边(例如CD)所在直线,整个四边形都在这条直线的同一侧,这样的四边形叫做凸四边形。而图7.3—6(2)中的四边形ABCD就不是凸四边形,因为画出边CD(或BC)所在直线,整个四边形不

5、都在这条直线的同一侧。类似地,画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形。本节只讨论凸多边形。我们知道,正方形的各个角都相等,各条边都相等。像正方形那样,各个角都相等,各条边都相等的多边形叫做正多边形。图7.3-7是正多边形的一些例子。特别提醒:(1)正多边形必须两个条件同时具备,①各内角都相等;②各边都相等。例如:矩形各个内角都相等,它就不是正四边形。再如:菱形各边都相等,它却不是正四边形。(三)练习一起学习课本86页的练习(四)小结引导学生总结本

6、节的知识点。(五)板书设计多边形及其内角和(一)一些相关概念特别提醒第二课时(一)思考三角形的内角和等于180°。正方形、长方形的内角和都等于360°,其他四边形的内角和等于多少?(二)探究任意画一个四边形,量出它的4个内角,计算它们的和。再画几个四边形,量一量,算一算。你能得出什么结论?能否利用三角形内角和等于180°得出这个结论?如图7.3—8,画出任意一个四边形的一条对角线,都能将这个四边形分为两个三角形。这样,任意一个四边形的内角和,都等于两个三角形的内角和,即360°。从上面的问题,你能想出

7、五边形和六边形的内角和各是多少吗?观察图7.3—9,请填空:从五边形的一个顶点出发,可以引_______条对角线,它们将五边形分为_______个三角形,五边形的内角和等于180°×_________。从六边形的一个顶点出发,可以引______条对角线,它们将六边形分为________个三角形,六边形的内角和等于180°×__________。通过以上问题,你能发现多边形的内角和与边数的关系吗?一般地,怎样求n边形的内角和呢?请填空:从n边形的一个顶点出发,可以引______条对角线,它们将n边形分为

8、________个三角形,n边形的内角和等于180°×______。总结:过n边形的一个顶点可以做(n-3)条对角线,将多边形分成(n-2)个三角形,每个三角形内角和180°。所以n边形内角和(n-2)×180°。把一个多边形分成几个三角形,还有其他分法吗?由新的分法,能得出多边形内角和公式吗?方法2:如图:7-3-3过n边形内任意一点与n边形各顶点连接,可得n个三角形,其内角和n×180°。再减去以O为顶点的周角。即得n边形内角和n·180°-360°

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。