函数自变量取值范围的确定方法

函数自变量取值范围的确定方法

ID:14214341

大小:784.00 KB

页数:14页

时间:2018-07-26

函数自变量取值范围的确定方法_第1页
函数自变量取值范围的确定方法_第2页
函数自变量取值范围的确定方法_第3页
函数自变量取值范围的确定方法_第4页
函数自变量取值范围的确定方法_第5页
资源描述:

《函数自变量取值范围的确定方法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、函数自变量取值范围的确定策略金山初级中学庄士忠201508函数是初中数学一个十分重要的内容,为保证函数式有意义或实际问题有意义,函数式中的自变量取值通常要受到一定的限制,这就是函数自变量的取值范围。函数自变量的取值范围是函数成立的先决条件,初中阶段确定函数自变量的取值范围大致可分为三种类型:(1)函数关系式中函数自变量的取值范围;(2)实际问题中函数自变量的取值范围;(3)几何问题中函数自变量的取值范围。一、函数关系式中函数自变量的取值范围:初中阶段,在一般的函数关系中自变量的取值范围主要考虑以下四种情况:(1)函数关系式为整式形式:自变量取值范围为任意实数;(2)函数关系式为分

2、式形式:分母≠0;(3)函数关系式含算术平方根:被开方数≥0;(4)函数关系式含0指数:底数≠0。典型例题:例1:函数的自变量x的取值范围在数轴上可表示为【】A.B.C.D.【分析】根据二次根式有意义的条件,计算出的取值范围,再在数轴上表示即可,不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。故在数轴上表示为:。故选D。例2:函数y=中自变量x取值范围是【】A.x=2B.x≠2C.x>2D.x<2【分析】求函数自变量的取值范

3、围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须。故选B。例3:函数中自变量x的取值范围是【】A.x>﹣2B.x≥2C.x≠﹣2D.x≥﹣2【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须-14-。故选A。例4:函数的图像在【】象限A.第一B.第一、三C.第二D.第二、四【分析】∵函数的定义域为,∴,∴根据面直角坐标系中各象限点的特征知图像在第一象限,故选A。二、实际问题中函数自变量的取值范围:在实际问题中确定自变量的取值范围,主要考虑两个因素

4、:(1)自变量自身表示的意义,如时间、路程、用油量等不能为负数;(2)问题中的限制条件,此时多用不等式或不等式组来确定自变量的取值范围。典型例题:例1:某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【分析】(1)利用待定系数法求出一次函数解析式即可,根据当生产数量至少为10吨,但不超过50吨时,得出x的定义域。(2)根据总成本=每吨的成本×生产数量,利用(

5、1)中所求得出即可。【答案】解:(1)利用图象设y关于x的函数解析式为y=kx+b,将(10,10)(50,6)代入解析式得:,解得:。∴y关于x的函数解析式为y=x+11(10≤x≤50)。(2)当生产这种产品的总成本为280万元时,x(x+11)=280,解得:x1=40,x2=70(不合题意舍去)。∴该产品的生产数量为40吨。例2:某私营服装厂根据2011年市场分析,决定2012年调整服装制作方案,准备每周(按120工时计算)制作西服、休闲服、衬衣共360件,且衬衣至少60件。已知每件服装的收入和所需工时如下表:-14-服装名称西服休闲服衬衣工时/件收入(百元)/件321设

6、每周制作西服x件,休闲服y件,衬衣z件。(1)请你分别从件数和工时数两个方面用含有x,y的代数式表示衬衣的件数z。(2)求y与x之间的函数关系式。(3)每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?【分析】(1)题目中的已知条件分别从件数和工时数两个方面用含x,y的关系式表示z。(2)由(1)整理得:y=360-3x。(3)由题意得s=3x+2y+z,化为一个自变量,得到关于x的一次函数。由题意得,解得30≤x≤120,从而根据一次函数的性质作答。【答案】解:(1)从件数方面:z=360-x-y,从工时数方面:由x+y+z=120整理得:z=480-2

7、x-y。(2)由(1)得360-x-y=480-2x-y,整理得:y=360-3x。(3)由题意得总收入s=3x+2y+z=3x+2(360-3x)+2x=-x+720由题意得,解得30≤x≤120。由一次函数的性质可知,当x=30的时候,s最大,即当每周生产西服30件,休闲服270件,衬衣60件时,总收入最高,最高总收入是690百元。例3:某科技开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。