欢迎来到天天文库
浏览记录
ID:14202831
大小:692.50 KB
页数:14页
时间:2018-07-26
《免费--2013届高考--数学一轮复习--精品学案:第32讲不等式解法及应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、中学学科网学海泛舟系列资料WWW.ZXXK.COM上中学学科网,下精品学科资料2013年普通高考数学科一轮复习精品学案第32讲不等式解法及应用一.课标要求:1.不等关系通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.一元二次不等式①.经历从实际情境中抽象出一元二次不等式模型的过程;②通过函数图像了解一元二次不等式与相应函数、方程的联系;③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。3二元一次不等式组与简单线性规划问题①从实际情境中抽象出二元一次不等式组;②了解二元一次不等式的几何意义,能用平面区域表
2、示二元一次不等式组;③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。二.命题走向分析近几年的高考试题,本将主要考察不等式的解法,综合题多以与其他章节(如函数、数列等)交汇。从题型上来看,多以比较大小,解简单不等式以及线性规划等,解答题主要考察含参数的不等式的求解以及它在函数、导数、数列中的应用。预测2013年高考的命题趋势:1.结合指数、对数、三角函数的考察函数的性质,解不等式的试题常以填空题、解答题形式出现;2.以当前经济、社会、生活为背景与不等式综合的应用题仍是高考的热点,主要考察考生阅读以及分析、解决问题的能力;3.在函数、不等式、数列、解析几何、
3、导数等知识网络的交汇点命题,特别注意与函数、导数综合命题这一变化趋势;4.对含参数的不等式,要加强分类讨论思想的复习,学会分析引起分类讨论的原因,合理分类,不重不漏。三.要点精讲1.不等式的解法中学学科网学海泛舟系列资料WWW.ZXXK:COM版权所有@中学学科网中学学科网学海泛舟系列资料WWW.ZXXK.COM上中学学科网,下精品学科资料解不等式是求定义域、值域、参数的取值范围时的重要手段,与“等式变形”并列的“不等式的变形”,是研究数学的基本手段之一。高考试题中,对解不等式有较高的要求,近两年不等式知识占相当大的比例。(1)同解不等式((1)与同解;(2)与同解,
4、与同解;(3)与同解);2.一元一次不等式解一元一次不等式(组)及一元二次不等式(组)是解其他各类不等式的基础,必须熟练掌握,灵活应用。情况分别解之。3.一元二次不等式或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。4.分式不等式分式不等式的等价变形:>0f(x)·g(x)>0,≥0。5.简单的绝对值不等式绝对值不等式适用范围较广,向量、复数的模、距离、极限的定义等都涉及到绝对值不等式。高考试题中,对绝对值不等式从多方面考查。解绝对值不等式的常用方法:中学学科网学海泛舟系列资料WWW.ZXXK:COM版权所有@中学学科网中学学科网学海泛舟系列资
5、料WWW.ZXXK.COM上中学学科网,下精品学科资料①讨论法:讨论绝对值中的式于大于零还是小于零,然后去掉绝对值符号,转化为一般不等式;②等价变形:解绝对值不等式常用以下等价变形:
6、x
7、0),
8、x
9、>ax2>a2x>a或x<-a(a>0)。一般地有:
10、f(x)
11、12、f(x)13、>g(x)f(x)>g(x)或f(x)14、成虚线以表示区域不包括边界直线。当我们在坐标系中画不等式所表示的平面区域时,此区域应包括边界直线,则把直线画成实线。中学学科网学海泛舟系列资料WWW.ZXXK:COM版权所有@中学学科网中学学科网学海泛舟系列资料WWW.ZXXK.COM上中学学科网,下精品学科资料说明:由于直线同侧的所有点的坐标代入,得到实数符号都相同,所以只需在直线某一侧取一个特殊点,从的正负即可判断表示直线哪一侧的平面区域。特别地,当时,通常把原点作为此特殊点。(2)有关概念引例:设,式中变量满足条件,求的最大值和最小值。由题意,变量所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域15、的公共区域。由图知,原点不在公共区域内,当时,,即点在直线:上,作一组平行于的直线:,,可知:当在的右上方时,直线上的点满足,即,而且,直线往右平移时,随之增大。由图象可知,当直线经过点时,对应的最大,当直线经过点时,对应的最小,所以,,。在上述引例中,不等式组是一组对变量的约束条件,这组约束条件都是关于的一次不等式,所以又称为线性约束条件。是要求最大值或最小值所涉及的变量的解析式,叫目标函数。又由于是的一次解析式,所以又叫线性目标函数。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解中学学科网学
12、f(x)
13、>g(x)f(x)>g(x)或f(x)14、成虚线以表示区域不包括边界直线。当我们在坐标系中画不等式所表示的平面区域时,此区域应包括边界直线,则把直线画成实线。中学学科网学海泛舟系列资料WWW.ZXXK:COM版权所有@中学学科网中学学科网学海泛舟系列资料WWW.ZXXK.COM上中学学科网,下精品学科资料说明:由于直线同侧的所有点的坐标代入,得到实数符号都相同,所以只需在直线某一侧取一个特殊点,从的正负即可判断表示直线哪一侧的平面区域。特别地,当时,通常把原点作为此特殊点。(2)有关概念引例:设,式中变量满足条件,求的最大值和最小值。由题意,变量所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域15、的公共区域。由图知,原点不在公共区域内,当时,,即点在直线:上,作一组平行于的直线:,,可知:当在的右上方时,直线上的点满足,即,而且,直线往右平移时,随之增大。由图象可知,当直线经过点时,对应的最大,当直线经过点时,对应的最小,所以,,。在上述引例中,不等式组是一组对变量的约束条件,这组约束条件都是关于的一次不等式,所以又称为线性约束条件。是要求最大值或最小值所涉及的变量的解析式,叫目标函数。又由于是的一次解析式,所以又叫线性目标函数。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解中学学科网学
14、成虚线以表示区域不包括边界直线。当我们在坐标系中画不等式所表示的平面区域时,此区域应包括边界直线,则把直线画成实线。中学学科网学海泛舟系列资料WWW.ZXXK:COM版权所有@中学学科网中学学科网学海泛舟系列资料WWW.ZXXK.COM上中学学科网,下精品学科资料说明:由于直线同侧的所有点的坐标代入,得到实数符号都相同,所以只需在直线某一侧取一个特殊点,从的正负即可判断表示直线哪一侧的平面区域。特别地,当时,通常把原点作为此特殊点。(2)有关概念引例:设,式中变量满足条件,求的最大值和最小值。由题意,变量所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域
15、的公共区域。由图知,原点不在公共区域内,当时,,即点在直线:上,作一组平行于的直线:,,可知:当在的右上方时,直线上的点满足,即,而且,直线往右平移时,随之增大。由图象可知,当直线经过点时,对应的最大,当直线经过点时,对应的最小,所以,,。在上述引例中,不等式组是一组对变量的约束条件,这组约束条件都是关于的一次不等式,所以又称为线性约束条件。是要求最大值或最小值所涉及的变量的解析式,叫目标函数。又由于是的一次解析式,所以又叫线性目标函数。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解中学学科网学
此文档下载收益归作者所有