lecture on invriant theory

lecture on invriant theory

ID:14184533

大小:901.08 KB

页数:232页

时间:2018-07-26

lecture on invriant theory_第1页
lecture on invriant theory_第2页
lecture on invriant theory_第3页
lecture on invriant theory_第4页
lecture on invriant theory_第5页
资源描述:

《lecture on invriant theory》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LECTURESONINVARIANTTHEORYIGORV.DOLGACHEVFebruary12,2003iiPrefaceThisbookisbasedonone-semestergraduatecoursesIgaveatMichiganin1994and1998,andatHarvardin1999.ApartofthebookisborrowedfromanearlierversionofmylecturenoteswhichwerepublishedbytheSeoulNationalUniver-sity[22].Thema

2、inchangesconsistofincludingseveralchaptersonalgebraicinvarianttheory,simplifyingandcorrectingproofs,andaddingmoreexamplesfromclassicalalgebraicgeometry.ThelastLectureof[22]whichcontainssomeapplicationstoconstructionofmodulispaceshasbeenomitted.Thebookislit-erallyintendedto

3、beafirstcourseinthesubjecttomotivateabeginnertostudymore.AneweditionofD.Mumford’sbookGeometricInvariantTheorywithap-pendicesbyJ.FogartyandF.Kirwan[75]aswellasasurveyarticleofV.PopovandE.Vinberg[91]willhelpthereadertonavigateinthisbroadandoldsubjectofmathematics.Mostoftheres

4、ultsandtheirproofsdiscussedinthepresentbookcanbefoundintheliterature.Weincludesomeoftheextensivebibliographyofthesubject(withnoclaimforcompleteness).Themainpurposeofthisbookistogiveashortandself-containedexpositionofthemainideasofthetheory.Thesolenoveltyisincludingmanyexam

5、plesillustratingthedependenceofthequo-tientonalinearizationoftheactionaswellasincludingsomebasicconstructionsintoricgeometryasexamplesoftorusactionsonaffinespace.Wealsogivemanyexamplesrelatedtoclassicalalgebraicgeometry.Eachchapterendswithasetofexercisesandbibliographicalno

6、tes.Weassumeonlyminimalprerequisitesforstudents:abasicknowledgeofalgebraicgeometrycoveredinthefirsttwochap-tersofShafarevich’sbook[104]and/orHartshorne’sbook[46],agoodknowledgeofmultilinearalgebraandsomerudimentsofthetheoryoflinearrepresentationsofgroups.Althoughweoftenuses

7、omeofthetheoryofaffinealgebraicgroups,theknowledgeofthegroupGLnisenoughforourpurpose.Iamgratefultosomeofmystudentsandcolleaguesforcriticalremarksandcatchingnumerousmistakesinmylecturenotes.SpecialthanksgotoAna-MariaCastravet,MihneaPopa,JanisStipinsandIvanArzhantsev.iiiConte

8、ntsPrefaceiiiIntroductionix1Thesymbolicmethod11.1Firstexamples...........................

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。