lecture notes on measure theory and integration

lecture notes on measure theory and integration

ID:14252334

大小:232.76 KB

页数:40页

时间:2018-07-27

lecture notes on measure theory and integration _第1页
lecture notes on measure theory and integration _第2页
lecture notes on measure theory and integration _第3页
lecture notes on measure theory and integration _第4页
lecture notes on measure theory and integration _第5页
资源描述:

《lecture notes on measure theory and integration 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MeasureTheoryV.Liskevich19981IntroductionWealwaysdenotebyXouruniverse,i.e.allthesetsweshallconsideraresubsetsofX.Recallsomestandardnotation.2XeverywheredenotesthesetofallsubsetsofagivensetX.IfAB=?thenweoftenwriteAtBratherthanA[B,tounderlinethedisjointness.Thecomplement(inX)ofasetAisdenoted

2、byAc.ByA4BthesymmetricdifferenceofAandBisdenoted,i.e.A4B=(AnB)[(BnA).Lettersi;j;kalwaysdenotepositiveintegers.Thesign¹isusedforrestrictionofafunction(operatoretc.)toasubset(subspace).1.1TheRiemannintegralRecallhowtoconstructtheRiemannianintegral.Letf:[a;b]!R:Considerapartition¼of[a;b]:a=x0

3、1

4、;¼)=infs¯(f;¼)=fdx:j¼j!0¼a1Clearly,ZbZbs(f;¼)·fdx·fdx·s¯(f;¼)aaforanypartition¼.ThefunctionfissaidtobeRiemannintegrableon[a;b]iftheupperandlowerintegralsareequal.ThecommonvalueiscalledRiemannintegraloffon[a;b].Thefunctionscannothavealargesetofpointsofdiscontinuity.Morepresicelythiswillbesta

5、tedfurther.1.2TheLebesgueintegralItallowstointegratefunctionsfromamuchmoregeneralclass.First,consideraveryusefulexample.Forf;g2C[a;b],twocontinuousfunctionsonthesegment[a;b]=fx2R:a6x6bgput½1(f;g)=maxjf(x)¡g(x)j;a6x6bZb½2(f;g)=jf(x)¡g(x)jdx:aThen(C[a;b];½1)isacompletemetricspace,when(C[a;b];

6、½2)isnot.Toprovethelatterstatement,considerafamilyoffunctionsf'g1asdrawnonFig.1.ThisisaCauchynn=1sequencewithrespectto½2.However,thelimitdoesnotbelongtoC[a;b].26LLLLLLLLL-¡1¡1+11¡1122n2n2Figure1:Thefunction'n.2SystemsofSetsDefinition2.1Aringofsetsisanon-emptysubsetin2Xwhichisclosedwithrespec

7、ttotheoperations[andn.Proposition.LetKbearingofsets.Then?2K.Proof.SinceK6=?,thereexistsA2K.SinceKcontainsthedifferenceofeverytwoitselements,onehasAnA=?2K.¥Examples.1.ThetwoextremecasesareK=f?gandK=2X.2.LetX=RanddenotebyKallfiniteunionsofsemi-segments[a;b).

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。