a lecture on the classical kam theory,

a lecture on the classical kam theory,

ID:15503537

大小:399.85 KB

页数:33页

时间:2018-08-03

a lecture on the classical kam theory,_第1页
a lecture on the classical kam theory,_第2页
a lecture on the classical kam theory,_第3页
a lecture on the classical kam theory,_第4页
a lecture on the classical kam theory,_第5页
资源描述:

《a lecture on the classical kam theory,》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Version1.3–2009SmallcorrectionsandupdatedreferencesALectureontheClassicalKAMTheoremJürgenPöschel1TheClassicalKAM-Theorema.ThepurposeofthislectureistodescribetheKamtheoreminitsmostbasicformandtogiveacompleteanddetailedproof.Thisproofessentiallyfollowsthe

2、traditionallineslaidoutbytheinventorsofthistheory,Kolmogorov,ArnoldandMarXiv:0908.2234v1[math.DS]16Aug2009oser(whencetheacronym‘Kam’),andtheemphasisismoreontheunderlyingideasthanonthesharpnessofthearguments.Afterall,Kamtheoryisnotonlyacollectionofspecifi

3、ctheorems,butratheramethodology,acollectionofideasofhowtoapproachcertainproblemsinperturbationtheoryconnectedwith‘smalldivisors’.b.TheclassicalKamtheoremisconcernedwiththestabilityofmotionsinhamiltoniansystems,thataresmallperturbationsofintegrablehamilt

4、oniansystems.Theseintegrablesystemsarecharacterizedbytheexistenceofactionanglecoordinatessuchthatthehamiltoniandependsontheactionvariablealone–see[2,14]fordetails.ThuswearegoingtoconsiderhamiltoniansoftheformH(p;q)=h(p)+f"(p;q);f"(p;q)=f(p;q;)forsmal

5、l,wherep=(p1;:::;pn)aretheactionvariablesvaryingoversomedomainDRn,whileq=(q;:::;q)aretheconjugateangularvariables,whosedomain1nistheusualn-torusTnobtainedfromRnbyidentifyingpointswhosecomponents2Section1:TheClassicalKAM-Theoremdifferbyintegermultipleso

6、f2.Thus,f"hasperiod2ineachcomponentofq.Moreover,allourhamiltoniansareassumedtoberealanalyticinallarguments.Theequationsofmotionare,asusual,p_=Hq(p;q);q_=Hp(p;q)instandardvectornotation,wherethedotindicatesdifferentiationwithrespecttothetimet,andthesub

7、scriptsindicatepartialderivatives.TheunderlyingphasespaceisDTnRnTnwiththestandardsymplecticstructureX=dpj^dqj:16j6nThehamiltonianvectorfieldXHassociatedwiththeequationsofmotionsthensatisfies(XH;)=dH.Weassumethatthenumbernofdegreesoffreedomisatleast

8、2,sinceonedegreeoffreedomsystemsarealwaysintegrable.c.For=0thesystemisgovernedbytheunperturbed,integrablehamilton-ianh,andtheequationsofmotionreducetop_=0;q_=!with!=hp(p):Theyareeasilyintegrated–hencethenameintegrablesystem–andt

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。