欢迎来到天天文库
浏览记录
ID:13737265
大小:121.32 KB
页数:5页
时间:2018-07-24
《2018版高中数学人教b版选修2-2学案:2.2.2 反证法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2017-2018学年人教B版高中数学学案2.2.2 反证法明目标、知重点 1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.1.反证法的定义一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒t,t与假设矛盾,或与某个真命题矛盾.从而判定綈q为假,推出q为真的方法,叫做反证法.2.反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与假设矛盾或与数学公理、定理、公式、定义或已被证明了的结论矛盾,或与公认的简单事实矛盾等.3.反证法中常用的“结论词”与“反设词”如下
2、结论词至少有一个至多有一个至少有n个至多有n个反设词一个也没有(不存在)至少有两个至多有(n-1)个至少有(n+1)个结论词只有一个对所有x成立对任意x不成立反设词没有或至少有两个存在某个x不成立存在某个x成立结论词都是一定是p或qp且q反设词不都是不一定是綈p且綈q綈p或綈q[情境导学]王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘
3、光了,而这树上却结满了李子,所以李子一定是苦的.”这就是著名的“道旁苦李”的故事.王戎的论述,运用的方法即是本节课所要学的方法——反证法.探究点一 反证法的概念52017-2018学年人教B版高中数学学案思考1 结合情境导学描述反证法的一般模式是什么?答 (1)假设原命题不成立(提出原命题的否定,即“李子苦”),(2)以此为条件,经过正确的推理,最后得出一个结论(“早被路人摘光了”),(3)判定该结论与事实(“树上结满李子”)矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法称为反证法.思考2 反证法证明的
4、关键是经过推理论证,得出矛盾.反证法引出的矛盾有几种情况?答 (1)与假设矛盾;(2)与数学公理、定理、公式、定义或已被证明了的结论矛盾;(3)与公认的简单事实矛盾.思考3 反证法主要适用于什么情形?答 ①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.探究点二 用反证法证明定理、性质等一些事实结论例1 已知直线a,b和平面α,如果a⊄α,b⊂α,且a∥b,求证:a∥α.证明 因为a∥b,所以经过直线a
5、,b确定一个平面β.因为a⊄α,而a⊂β,所以α与β是两个不同的平面.因为b⊂α,且b⊂β,所以α∩β=b.下面用反证法证明直线a与平面α没有公共点.假设直线a与平面α有公共点P,如图所示,则P∈α∩β=b,即点P是直线a与b的公共点,这与a∥b矛盾.所以a∥α.反思与感悟 数学中的一些基础命题都是数学中我们经常用到的明显事实,它们的判定方法极少,宜用反证法证明.正难则反是运用反证法的常见思路,即一个命题的结论如果难以直接证明时,可考虑用反证法.跟踪训练1 如图,已知a∥b,a∩平面α=A.求证:直线b与平面α必相交
6、.证明 假设b与平面α不相交,即b⊂α或b∥α.①若b⊂α,因为b∥a,a⊄α,所以a∥α,这与a∩α=A相矛盾;②如图所示,如果b∥α,52017-2018学年人教B版高中数学学案则a,b确定平面β.显然α与β相交,设α∩β=c,因为b∥α,所以b∥c.又a∥b,从而a∥c,且a⊄α,c⊂α,则a∥α,这与a∩α=A相矛盾.由①②知,假设不成立,故直线b与平面α必相交.探究点三 用反证法证明否定性命题例2 求证:不是有理数.证明 假设是有理数.于是,存在互质的正整数m,n,使得=,从而有m=n,因此m2=2n2,所
7、以m为偶数.于是可设m=2k(k是正整数),从而有4k2=2n2,即n2=2k2,所以n也为偶数.这与m,n互质矛盾.由上述矛盾可知假设错误,从而不是有理数.反思与感悟 当结论中含有“不”、“不是、“不可能”、“不存在”等否定形式的命题时,由于此类问题的反面比较具体,适于应用反证法.跟踪训练2 已知三个正数a,b,c成等比数列,但不成等差数列,求证:,,不成等差数列.证明 假设,,成等差数列,则+=2,即a+c+2=4b,而b2=ac,即b=,∴a+c+2=4,∴(-)2=0.即=,从而a=b=c,与a,b,c不成等
8、差数列矛盾,故,,不成等差数列.探究点四 含至多、至少、唯一型命题的证明例3 若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多有一个实根.证明 假设方程f(x)=0在区间[a,b]上至少有两个实根,设α、β为其中的两个实根.因为α≠β,52017-2018学年人教B版高中数学学案不妨设α<β,又因为函数f(x
此文档下载收益归作者所有