资源描述:
《北师大版八年级数学下册导学案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、八年级数学下册导学案长安中学张丹第二章一元一次不等式和一元一次不等式组§2.1不等关系学习目标:1.理解不等式的意义.2.能根据条件列出不等式.3.通过列不等式,训练学生的分析判断能力和逻辑推理能力.4.通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.学习重点:用不等关系解决实际问题.学习难点:正确理解题意列出不等式.预习作业:请同学们预习作业教材P2-4的内容,在学习的过程中请弄清以下几个问题:1.不等式的概念:一般地,用符号“<”(或≤),“>”(
2、或≥)连接的式子叫做______________2.长度是L的绳子围成一个面积不小于100的圆,绳长L应满足的关系式为________例1、用不等式表示(1)a是正数;(2)a是负数;(3)a与6的和小于5;(4)x与2的差小于-1;(5)x的4倍大于7;(6)y的一半小于3.变式训练:用适当的符号表示下列关系:(1)a是非负数;(2)直角三角形斜边c比它的两直角边a、b都长;(3)X与17的和比它的5倍小。2.(1)当x=2时,不等式x+3>4成立吗?(2)当x=1.5时,成立吗?(3)当x=-1呢?活动与探究:a,b两个
3、实数在数轴上的对应点如图1-2所示:图1-2用“<”或“>”号填空:(1)a__________b;(2)
4、a
5、__________
6、b
7、;(3)a+b__________0;(4)a-b__________0;(5)a+b__________a-b;(6)ab__________a拓展训练:1.某校两名教师带若干名学生去旅游,联系了两家标价相同的旅游公司,经洽谈后,甲公司优惠条件是1名教师全额收费,其余7.5折收费;乙公司的优惠条件是全部师生8折收费.试问当学生人数超过多少人时,其余7.5折收费;甲旅游公司比乙旅游公司更优
8、惠?(只列关系式即可)§2.2不等式的基本性质学习目标:1.探索并掌握不等式的基本性质;2.理解不等式与等式性质的联系与区别.3.通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.学习重点:探索不等式的基本性质,并能灵活地掌握和应用.学习难点:能根据不等式的基本性质进行化简.回顾等式的基本性质:等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.预习作业:学习教材P7-P8的内容,通过学习弄清
9、以下问题:不等式的基本性质有哪些?不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向__________不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向____不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向____不等式的基本性质与等式的基本性质有什么异同?例1、将下列不等式化成“x>a”或“x<a”的形式:(1)x-5>-1;(2)-2x>3;(3)3x<-9.(4)(5)(6)说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负
10、,从而决定不等号方向的改变与否.2.已知,下列不等式一定成立吗?(1)(2)(3)(4)议一议:1.讨论下列式子的正确与错误.(1)如果a<b,那么a+c<b+c;(2)如果a<b,那么a-c<b-c;(3)如果a<b,那么ac<bc;(4)如果a<b,且c≠0,那么>.2.设a>b,用“<”或“>”号填空.(1)a+1b+1;(2)a-3b-3;(3)3a3b;(4);(5)--;(6)-a-b.变式训练:1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)x-2<3;(2)6x<5x-1;(3)
11、x>5;(4)-4x>3.2.设a>b.用“<”或“>”号填空.(1)a-3b-3;(2);(3)-4a-4b;(4)5a5b;(5)当a>0,b0时,ab>0;(6)当a>0,b0时,ab<0;(7)当a<0,b0时,ab>0;(8)当a<0,b0时,ab<0.能力提高:1.比较a与-a的大小.(说明:解决此类问题时,要对字母的所有取值进行讨论.)2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?§2.3不等式的解集学习目标:1
12、.能够根据具体问题中的大小关系了解不等式的意义.2.理解不等式的解、不等式的解集、解不等式这些概念的含义.3.会在数轴上表示不等式的解集.4.培养学生从现实生活中发现并提出简单的数学问题的能力.5.经历求不等式的解集的过程,发展学生的创新意识.学习重点:1.理解不等式中的有关概念.2.探索