资源描述:
《全等三角形复习教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第11章《全等三角形》复习教案教学目标:1.了解图形的全等,经历探索三角形全等条件及性质的学习过程,掌握两个三角形全等的条件与性质。2.能用三角形的全等和角平分线性质解决实际问题3.培养逻辑思维能力,发展基本的创新意识和能力教学重点难点:1.重点:掌握全等三角形的性质与判定方法2.难点:对全等三角形性质及判定方法的运用教学过程:1、全等三角形的概念及其性质1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。2)全等三角形性质:(1)对应边相等(2)对应角相等(3)周长相等(4)面积相等例1.已知如图(1),≌,其中的对应边:____与____
2、,____与____,____与____,对应角:______与_______,______与_______,______与_______.例2.如图(2),若≌.指出这两个全等三角形的对应边;若≌,指出这两个三角形的对应角。(图1)(图2)(图3)例3.如图(3),≌,BC的延长线交DA于F,交DE于G,,,求、的度数.2.全等三角形的判定方法1)、三边对应相等的两个三角形全等(SSS)例1.如图,在中,,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC.求证:DE⊥AB。例2.如图,AB=AC,BE和CD相交于P,PB=PC,求证
3、:PD=PE.3例3.如图,在中,M在BC上,D在AM上,AB=AC,DB=DC。求证:MB=MC2)两边和夹角对应相等的两个三角形全等(SAS)例4.如图,AD与BC相交于O,OC=OD,OA=OB,求证:3)、两角和夹边对应相等的两个三角形全等(ASA)例5.如图,梯形ABCD中,AB//CD,E是BC的中点,直线AE交DC的延长线于F求证:≌4)、两角和夹边对应相等的两个三角形全等(AAS)例6.如图,在中,AB=AC,D、E分别在BC、AC边上。且,AD=DE求证:≌.5)、一条直角边和斜边对应相等的两个直角三角形全等(HL)例7.如图,在中,
4、,沿过点B的一条直线BE折叠,使点C恰好落在AB变的中点D处,则∠A的度数=。3.角平分线1)。角平分线性质定理:角平分线上的点到这个角两边的距离相等。逆定理:到一个叫两边的距离相等的点在这个角的平分线上。例8.(2006 芜湖课改)如图,在中,,平分,,那么点到直线的距离是 cm.例9.如图,已知在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于D.(1)若∠BAC=30°,则AD与BD之间有何数量关系,说明你的理由;3(2)若AP平分∠BAC,交BD于P,求∠BPA的度数.4.尺规作图(1)、尺规作图是指限定用无刻度的直尺而圓規能
5、以一給定點為圓心,過另一個給定點畫出一個圓(當然,這兩種工具都是理想化的。試問哪把尺子能有無限長?)。和圆规作为工具的作图。(2)、尺规作图举例AOB′例1.(06长沙)如图,已知和射线,用尺规作图法作(要求保留作图痕迹).例2.如图,Rt△ABC中,∠C=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保留作图痕迹,不要求写作法和证明).3