4.4数字特征与极限定理

4.4数字特征与极限定理

ID:1358938

大小:1.28 MB

页数:61页

时间:2017-11-10

4.4数字特征与极限定理_第1页
4.4数字特征与极限定理_第2页
4.4数字特征与极限定理_第3页
4.4数字特征与极限定理_第4页
4.4数字特征与极限定理_第5页
资源描述:

《4.4数字特征与极限定理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、4.4数字特征与极限定理在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了.f(x)xoxP(x)o然而,在实际问题中,概率分布一般是较难确定的.而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了.某型号电视机的平均寿命18000小时±200小时因此,在对随机变量的研究中,确定某些数字特征是重要的.我们先介绍随机变量的数学期望.在这些数字特征中,最常用的是期望和方差随机变量的数学期望是概率论中最重要的

2、概念之一.它的定义来自习惯上的平均概念.我们从离散型随机变量的数学期望开始.一、离散型随机变量的数学期望1、概念的引入:某车间对工人的生产情况进行考察.车工小张每天生产的废品数X是一个随机变量.如何定义X的平均值呢?某电话交换台每天8:00-9:00收到的呼叫数X是一个随机变量.如何定义X的平均值即该交换台每天8:00-9:00收到的平均呼叫数呢?我们来看第一个问题.若统计100天,例1某车间对工人的生产情况进行考察.车工小张每天生产的废品数X是一个随机变量.如何定义X的平均值呢?32天没有出废

3、品;30天每天出一件废品;17天每天出两件废品;21天每天出三件废品;可以得到这100天中每天的平均废品数为这个数能否作为X的平均值呢?可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27.n0天没有出废品;n1天每天出一件废品;n2天每天出两件废品;n3天每天出三件废品.可以得到n天中每天的平均废品数为(假定小张每天至多出三件废品)一般来说,若统计n天,这是以频率为权的加权平均由频率和概率

4、的关系不难想到,在求废品数X的平均值时,用概率代替频率,得平均值为这是以概率为权的加权平均这样得到一个确定的数.我们就用这个数作为随机变量X的平均值.这样做是否合理呢?不妨把小张生产中出废品的情形用一个球箱模型来描述:22300031112200033111有一个箱子,里面装有10个大小,形状完全相同的球,号码如图.规定从箱中任意取出一个球,记下球上的号码,然后把球放回箱中为一次试验.记X为所取出的球的号码(对应废品数).X为随机变量,X的概率函数为2230003111对试验次数(即天数)n,及

5、小张的生产情况进行统计,统计他不出废品,出一件、二件、三件废品的天数n0,n1,n2,n3,并计算与进行比较.2230003111则对X作一系列观察(试验),所得X的试验值的平均值也是随机的.由此引入离散型r.vX的数学期望的定义如下:对于一个随机变量,若它可能取的值是X1,X2,…,相应的概率为p1,p2,…,但是,如果试验次数很大,出现Xk的频率会接近于pk,于是可期望试验值的平均值接近定义1设X是离散型随机变量,它的概率函数是:P(X=Xk)=pk,k=1,2,…也就是说,离散型随机变量的

6、数学期望是一个绝对收敛的级数的和.如果有限,定义X的数学期望例1某人的一串钥匙上有n把钥匙,其中只有一把能打开自己的家门,他随意地试用这串钥匙中的某一把去开门.若每把钥匙试开一次后除去,求打开门时试开次数的数学期望.解:设试开次数为X,P(X=k)=1/n,k=1,2,…,nE(X)于是二、连续型随机变量的数学期望设X是连续型随机变量,其密度函数为f(x),在数轴上取很密的分点x0

7、1)由于xi与xi+1很接近,所以区间[xi,xi+1)中的值可以用xi来近似代替.这正是的渐近和式.阴影面积近似为近似,因此X与以概率取值xi的离散型r.v该离散型r.v的数学期望是由此启发我们引进如下定义.定义2设X是连续型随机变量,其密度函数为f(x),如果有限,定义X的数学期望为也就是说,连续型随机变量的数学期望是一个绝对收敛的积分.若X~U(a,b),即X服从(a,b)上的均匀分布,则若X服从若X服从参数为由随机变量数学期望的定义,不难计算得:这意味着,若从该地区抽查很多个成年男子,分

8、别测量他们的身高,那么,这些身高的平均值近似是1.68.已知某地区成年男子身高X~三、随机变量函数的数学期望1.问题的提出:设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望.那么应该如何计算呢?如何计算随机变量函数的数学期望?一种方法是,因为g(X)也是随机变量,故应有概率分布,它的分布可以由已知的X的分布求出来.一旦我们知道了g(X)的分布,就可以按照期望的定义把E[g(X)]计算出来.使用这种方法必须先求出随机变量函数g(X)的分布,一般是比较

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。