培养小学生数学思维能力的策略

培养小学生数学思维能力的策略

ID:13338321

大小:54.00 KB

页数:14页

时间:2018-07-22

培养小学生数学思维能力的策略_第1页
培养小学生数学思维能力的策略_第2页
培养小学生数学思维能力的策略_第3页
培养小学生数学思维能力的策略_第4页
培养小学生数学思维能力的策略_第5页
资源描述:

《培养小学生数学思维能力的策略》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、培养小学生数学思维能力初探智力的核心是思维能力,思维能力提高了,智力水平也就提高,数学一向被称为“思维的体操”,因此小学数学教学中培养学生的思维能力是教师的一项基本任务。这就给每个小学数学教师提出了更高的要求,即在教学中不仅要教给学生现代化科学知识,而且要把学生培养成勇于思考、勇于探索、勇于创新的人,确实做到培养学生思维能力。一、夯实学生的思维基础数学本身就是由一系列概念和原理组成的系统性很强的知识,在学习数学时,学生只有将某一概念、原理纳入一定的知识体系之中,对这一概念、原理的理解才会深刻,应用起来才能灵活,才有利于用完整的知识去理解新的知识。在教学中,我们应引

2、导学生比较某一概念与其他相关概念之间的区别与联系,使学生具有这一概念的地位及其与其他概念关系的丰富知识,从而掌握概念的完整体系,为形成思维的针对性、广阔性建立起扎实的知识基础。二、激发学生思维动机动机是人们“因需要而产生的一种心理反映”,它是人们行为活动的内动力。因此,激发学生思维的动机,是培养其思维能力的关键因素。教师如何才能激发学生思维动机呢?这就要求教师必须在教学中充分发挥主导作用,根据学生心理特点,教师有意识地挖掘教材中的知识因素,从学生自身生活需要出发,使其明确知识的价值,从而产生思维的动机。例如:在教学“按比例分配”这一内容时,首先要使学生明确学习这一

3、知识的目的:在平均分不合理的情况下,就产生了按比例分配这种新的分配方法。教学时可设计这样一个问题:一个车间把生产1000个零件的任务交给了张师傅和李师傅,完成任务后要把500元的加工费分给他们。结果张师傅加工了600个零件,李师傅加工了400个零件。这时把500元的加工费平均分给他们合理吗?从而引发出学生探求合理的分配方法的思维动机。这样设计教学既渗透了“知识来源于生活”的数学思想,又使学生意识到学习知识的目的是为了解决生活和生产中的实际问题。学生的学习动机被激发起来了,自然会全身心地投入到后面的教学活动之中。三、启发学生思维独立思维的独立性表现为善于独立地提出问

4、题、分析问题、解决问题,不人云亦云,不迷信权威。在教学中要培养学生独立思考问题的习惯和能力。在讲课时要给学生独立思考、自由发表见解的机会,防止学生形成依赖教师的不良习惯。通过讲解和示范,使学生掌握分析问题和解决问题的途径、方法和步骤,教会学生怎样思维,指导学生在解决问题的先要明确问题的性质目的,抓住关键所在,然后进行有根据的、严密的、合乎逻辑的推理、判断,克服盲目的尝试和猜测。要运用多种方法,开拓学生的思路,鼓励学生多思,培养学生思维的灵活性。让学生对同一问题从不同的角度、方面去思考和分析,对同一问题寻找多种途径和方法解决,使学生的思维广阔、灵活。四、理清学生思维

5、脉络认知心理学家指出:“学生思维能力的发展是寓于知识发展之中的。”在教学中,对于每一个问题,既要考虑它原有的知识基础,又要考虑它下联的知识内容。只有这样,才能更好地激发学生思维,并逐步形成知识脉络。我们教学的关键在于使学生的这种思维脉络清晰化,而理清思维脉络的重点就是抓住思维的起始点和转折点。引导学生抓住思维的起始点。数学知识的脉络是前后衔接、环环紧扣的,并总是按照发生——发展——延伸的自然规律构成每个单元的知识体系。学生获得知识的思维过程也是如此,或从已有的经验开始,或从旧知识引入,这就是思维的开端。从学生思维的起始点入手,把握住思维发展的各个层次逐步深入直至终

6、结。如果这个开端不符合学生的知识水平或思维特点,学生就会感到问题的解决无从下手,其思维脉络就不会在有序的轨道上发展。例如:在教学“按比例分配”这一内容时,从学生已有知识基础——平均分入手,把握住平均分与按比例分配的关系,即把一个数量平均分就是按照1:1的比例进行分配,从而将学生的思维很自然地引入按比例分配,为学生扫清了认知上的障碍。引导学生抓住思维的转折点。学生的思维有时会出现“卡壳”的现象,这就是思维的障碍点。此时教学应适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。例如:甲乙两人共同加工一批零件,计划甲加工的零件个数是乙加工的2/5。实际

7、甲比计划多加工了34个,正好是乙加工零件个数的7/9。这批零件共有多少个?学生在思考这道题时,虽然能够准确地判断出2/5和7/9这两个分率都是以乙加工的零件个数为标准量的,但是,这两个标准量的数值并不相等,这样,学生的思维出现障碍。教师应及时抓住这个机会,引导学生开拓思路:“甲加工的零件个数是乙的2/5”,这说明甲、乙计划加工零件的个数是几比几?“正好是乙加工零件个数的7/9”又说明甲、乙实际加工零件个数是几比几?这样,就将以乙标准量的分率关系转化为以总个数为标准量的分率关系,直至解答出这道题。在这个过程中,教师引导学生由分数联想到比的过程,实际就是学生思维发生转

8、折的过程。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。