正文描述:《二元一次方程组集体备课》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第七章二元一次方程组1.谁的包裹多1.教学目标了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解.2.教学重点二元一次方程组的含义。3.教学难点判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识.第一环节:情境引入(一)情境1在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?(二)情境2
2、昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几个成人、几个儿童呢?同学们,你们能否用所学的方程知识解决呢?第二环节:新课讲解,练习提高内容:二元一次方程概念的概括提请学生思考:上面所列方程有几个未知数?所含未知数的项的次数是多少?从而归纳出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1的方程。教师对概念进行解析,要求学生注意:这个定义有两个要求:①含有两个未知数;②所含未知数的项的次数是一次.再呈现一些关于二元一次方程概念的辨析题,进行巩固练习:1.下列方程有哪些是二元一次方程:(1),(2),(3),(4),(
3、5),(6).(7)2xy+x=52.如果方程是二元一次方程,那么m=,n=.(二)二元一次方程组概念的概括师提请学生思考:上面的方程x-y=2,x+1=2(y-1)中的x含义相同吗?y呢?(两个方程中x的表示老牛驮的包裹数,y表示小马的包裹数,x、y的含义分别相同.)由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成,从而得出二元一次方程组的概念:20像这样含有两个未知数的两个一次方程所组成的一组方程.如:注意:在方程组中的各方程中的同一个字母必须表示同一个量.判断下列方程组是否是二元一次方程组:(1)(2)(3)(4)(5
4、)(6)(三)因承上面的情境,得出有关方程的解的概念1.x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?2.x=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?3.你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?各小组合作完成,各同学分别代入验算,教师巡回参与小组活动,并帮助找到3题的结论.由学生回答上面3个问题,老师作出结论:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.如x=6,y=2是方程x+y=8的一个解,记作;同样,也是方程x+y=8的一个解,同时又是方程5x+3y=3
5、4的一个解.二元一次方程各个方程的公共解,叫做二元一次方程组的解.例如,就是二元一次方程组的解.1.下列四组数值中,哪些是二元一次方程的解?(A)(B)(C)(D)2.二元一次方程的解有:203.二元一次方程组的解是()(A)(B)(C)(D)4.以为解的二元一次方程组是()(A)(B)(C)(D)5.二元一次方程的正整数解为.6.如果是的解,那么m=,n=.7.写出一个以为解的二元一次方程组为.8.已知方程是关于x,y的二元一次方程,则a=b=9.已知方程(m-2)x+my=1是关于x,y的二元一次方程,则m的取值范围是.10.已知方程是关于x,y的二元一次方程。当k为何值时为一元一次
6、方程?当k为何值时为二元一次方程?第三环节:课堂小结1.含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程.2.二元一次方程的解是一个互相关联的两个数值,它有无数个解.3.含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值.第四环节:布置作业习题7.1第七章二元一次方程组2.二元一次方程组的解法(一)1.教学目标1.会用代入消元法解二元一次方程组.2.了解“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.2.教学重点用代入消元法解二元一次方程组.3.教学难点在解题过程中体会“消元”思想和“化未知为已知
7、”的化归思想.20引入(一节的实际问题)新课一、解下列方程组(1)(2)(3)(整体代入法)二、总结:1.在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用含其中一个未知数的代数式表示另一个未知数,然后代入另一个未变形的方程,从而由“二元”转化为“一元”,达到消元的目的.我们将这种方法叫代入消元法.2.解二元一次方程组的基本思路是消元,把“二元”变为“一元”.3.解上述方程组的步骤:第一步:在已知方程组的两个方程中选择
显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。