09曲边梯形面积与定积分

09曲边梯形面积与定积分

ID:13047207

大小:943.50 KB

页数:47页

时间:2018-07-20

09曲边梯形面积与定积分_第1页
09曲边梯形面积与定积分_第2页
09曲边梯形面积与定积分_第3页
09曲边梯形面积与定积分_第4页
09曲边梯形面积与定积分_第5页
资源描述:

《09曲边梯形面积与定积分》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、曲边梯形面积与定积分概念1.曲边梯形:在直角坐标系中,由连续曲线y=f(x),直线x=a、x=b及x轴所围成的图形叫做曲边梯形。Oxyaby=f(x)一.求曲边梯形的面积x=ax=b因此,我们可以用这条直线L来代替点P附近的曲线,也就是说:在点P附近,曲线可以看作直线(即在很小范围内以直代曲).P放大再放大PPy=f(x)baxyOA1AA1.用一个矩形的面积A1近似代替曲边梯形的面积A,得AA1+A2用两个矩形的面积近似代替曲边梯形的面积A,得y=f(x)baxyOA1A2AA1+A2+A3+A4

2、用四个矩形的面积近似代替曲边梯形的面积A,得y=f(x)baxyOA1A2A3A4y=f(x)baxyOAA1+A2++An将曲边梯形分成n个小曲边梯形,并用小矩阵形的面积代替小曲边梯形的面积,于是曲边梯形的面积A近似为A1AiAn——以直代曲,无限逼近2.曲边梯形的面积求曲边梯形的面积即求下的面积——分成很窄的小曲边梯形,然后用矩形面积代后求和。若“梯形”很窄,可近似地用矩形面积代替在不很窄时怎么办?——以直代曲例1.求抛物线y=x2、直线x=1和x轴所围成的曲边梯形的面积。解把底边[0,1]分

3、成n等份,然后在每个分点作底边的垂线,这样曲边三角形被分成n个窄条,用矩形来近似代替,然后把这些小矩形的面积加起来,得到一个近似值:因此,我们有理由相信,这个曲边三角形的面积为:观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲

4、边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程

5、,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.——求由连续曲线y=f(x)对应的曲边梯形面积的方法(2)以直代曲:任取xi[xi-1,xi],第i个小曲边梯形的面积用高为f(xi),宽为Dx的小矩形面积f(xi)Dx近似地去代替.(4)逼近:所求曲边梯形的面积S为(3)作和:取n个小矩形面积的和作为曲边梯形面积S的近似值:xi-1y=f(x)xyObaxixi(1)分割:在区间[a,b]上等间隔地插入n-1个点,将它等分成n个小区

6、间:每个小区间宽度⊿x如果当n+∞时,Sn就无限接近于某个常数,这个常数为函数f(x)在区间[a,b]上的定积分,记作从求曲边梯形面积S的过程中可以看出,通过“四个步骤”:分割---以直代曲----求和------逼近.例2.弹簧在拉伸的过程中,力与伸长量成正比,即力F(x)=kx(k是常数,x是伸长量),求弹簧从平衡位置拉长b所作的功。解:将物体用常力F沿力的方向移动距离x,则所做的功W=Fx,本题F是克服弹簧拉力的变力,是移动距离x的函数,F(x)=kx,将[0,b]n等分,记△x=,分点依次为x0

7、=0,x1=,x2=,……,xn-1=,xn=b,当n很大时,在分段[xi,xi+1]所用的力约为kxi,所做的功△W≈kxi·△x=则从0到b所做的总功W近似地等于当n→+∞时,上式右端趋近于于是得到弹簧从平衡位置拉长b所做的功为Ovt12例3.汽车以速度v作匀速直线运动时,经过时间t所行使的路程S=vt.如果汽车作变速直线运动,在时刻t的速度为v(t)=-t2+2(单位:km/h),那么它在0≤t≤1(单位:h)这段时间内行驶的路程S(单位:km)是多少?Ovt12上图中:所有小矩形的面积之和,其极限

8、就是由直线x=0,x=1和曲线v(t)=-t2+2所围成的曲边梯形的面积.一、定积分的定义如果当n∞时,S的无限接近某个常数,这个常数为函数f(x)在区间[a,b]上的定积分,记作从求曲边梯形面积S的过程中可以看出,通过“四步曲”:分割---近似代替----求和------取极限得到解决.定积分的定义:定积分的相关名称:———叫做积分号,f(x)——叫做被积函数,f(x)dx—叫做被积表达式,x———叫做积分变量,a———

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。