2019高三一轮总复习文科数学课时跟踪检测:9-1随机事件的概率

2019高三一轮总复习文科数学课时跟踪检测:9-1随机事件的概率

ID:13023321

大小:82.83 KB

页数:7页

时间:2018-07-20

2019高三一轮总复习文科数学课时跟踪检测:9-1随机事件的概率_第1页
2019高三一轮总复习文科数学课时跟踪检测:9-1随机事件的概率_第2页
2019高三一轮总复习文科数学课时跟踪检测:9-1随机事件的概率_第3页
2019高三一轮总复习文科数学课时跟踪检测:9-1随机事件的概率_第4页
2019高三一轮总复习文科数学课时跟踪检测:9-1随机事件的概率_第5页
资源描述:

《2019高三一轮总复习文科数学课时跟踪检测:9-1随机事件的概率》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、[课时跟踪检测] [基础达标]1.(2018届银川期中)同时掷三枚骰子,互为对立事件的是(  )A.至少有一枚正面和最多有一枚正面B.最多有一枚正面和恰有两枚正面C.至多有一枚正面和至少有两枚正面D.至少有两枚正面和恰有一枚正面解析:A中的两个事件是包含关系,不是互斥事件,B中的两个事件是互斥但不是对立事件;C中两个事件是对立事件;D中两个事件是互斥但不是对立事件.答案:C2.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别为0.2,0.2,0.3,0.3,则下列说法正确的是(  )A.A∪B与

2、C是互斥事件,也是对立事件B.B∪C与D是互斥事件,也是对立事件C.A∪C与B∪D是互斥事件,但不是对立事件D.A与B∪C∪D是互斥事件,也是对立事件解析:由于A,B,C,D彼此互斥,且A∪B∪C∪D是一个必然事件,故其事件的关系可由图所示的Venn图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.答案:D3.(2018届揭阳模拟)甲、乙两人下棋,两人和棋的概率是,乙获胜的概率是,则乙不输的概率是(  )A.          B

3、./C.D.解析:乙不输包含两种情况:一是两人和棋,二是乙获胜,故所求概率为+=.答案:A4.一个盒子内装有红球、白球、黑球三种球,其数量分别为3,2,1,从中任取两球,则互斥而不对立的两个事件为(  )A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红球、黑球各一个解析:红球、黑球各取一个,则一定取不到白球,故“至少有一个白球”“红球、黑球各一个”为互斥事件,又任取两球还包含“两个红球”这个事件,故不是对立事件.答案:D5.掷一个骰子

4、的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+发生的概率为(  )A.B.C.D.解析:掷一个骰子的试验有6种可能结果,依题意P(A)==,P(B)==,所以P()=1-P(B)=1-=,因为表示“出现5点或6点”的事件,因此事件A与互斥,从而P(A+)=P(A)+P()=+=.答案:C/6.袋中装有3个白球,4个黑球,从中任取3个球,则下面事件是互斥事件但不是对立事件的为(  )A.恰有1个白球和全是白球B.至少有1个白球和全是黑球C.至少有1个白球和

5、至少有2个白球D.至少有1个白球和至少有1个黑球.解析:由题意可知,事件C、D均不是互斥事件;A、B为互斥事件,但B又是对立事件,满足题意只有A,故选A.答案:A7.(2018届福州模拟)规定:投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀.根据以往经验某选手投掷一次命中8环以上的概率为.现采用计算机做模拟实验来估计该选手获得优秀的概率:用计算机产生0到9之间的随机整数,用0,1表示该次投掷未在8环以上,用2,3,4,5,6,7,8,9表示该次投掷在8环以上,经随机模拟试验产生了如下20组随机数

6、:907 966 191 925 271 932 812 458 569 683031 257 393 527 556 488 730 113 537 989据此估计,该选手投掷1轮,可以拿到优秀的概率为(  )A.B.C.D.解析:根据随机试验数得为优秀的数据有17个,该选手投掷1轮,可以拿到优秀的概率为.答案:D8.抛掷一枚均匀的骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)一次,观察掷出向上的点数,设事件A为掷出向上为偶数点,事件B为掷出向上为3点,则P(A∪B)=(  )A.B./C.

7、D.解析:事件A为掷出向上为偶数点,所以P(A)=.事件B为掷出向上为3点,所以P(B)=,又事件A,B是互斥事件,所以P(A∪B)=P(A)+P(B)=.答案:B9.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品};事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为________.解析:“抽到的不是一等品”与事件A是对立事件,∴所求概率为1-P(A)=0.35.答案:0.3510.袋中装有9个白球,2个

8、红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________(填序号).解析:至少有1个红球和全是白球不同时发生,且一定有一个发生,所以②中两事件是对立事件.答案:②11.如果事件A与B是互斥事件,且事件A∪B发生的概率是0.64,事件B发生的概率是事件A发生的概率的3倍,则事件A发生的概率为________.解

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。