初二数学因式分解知识点经典总结

初二数学因式分解知识点经典总结

ID:12988349

大小:318.00 KB

页数:7页

时间:2018-07-20

初二数学因式分解知识点经典总结_第1页
初二数学因式分解知识点经典总结_第2页
初二数学因式分解知识点经典总结_第3页
初二数学因式分解知识点经典总结_第4页
初二数学因式分解知识点经典总结_第5页
资源描述:

《初二数学因式分解知识点经典总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、整式乘除与因式分解概述  定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。  意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。 

2、 分解因式与整式乘法互为逆变形。因式分解的方法  因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。  注意三原则  1分解要彻底  2最后结果只有小括号  3最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1))基本方法⑴提公因式法  各项都含有的公共的因式叫做这个多项式各项的公因式。  如果一个多项式的各项有公因式,可以把这

3、个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。  具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。  如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。    例如:-am+bm+cm=-m(a-b-c);  a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。  注意:把2

4、a^2+1/2变成2(a^2+1/4)不叫提公因式⑵公式法  如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。  平方差公式:a2-b2=(a+b)(a-b);  完全平方公式:a2±2ab+b2=(a±b)2;  注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。  立方和公式:a3+b3=(a+b)(a2-ab+b2);  立方差公式:a3-b3=(a-b)(a2+ab+b2);  完全立方公式:a3±3a2

5、b+3ab2±b3=(a±b)3.  公式:a3+b3+c3=(a+b+c)(a2+b2+c2-ab-bc-ca)  例如:a2+4ab+4b2=(a+2b)2。  (3)分解因式技巧  1.分解因式与整式乘法是互为逆变形。  2.分解因式技巧掌握:  ①等式左边必须是多项式;  ②分解因式的结果必须是以乘积的形式表示;  ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;  ④分解因式必须分解到每个多项式因式都不能再分解为止。  注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考

6、虑。  3.提公因式法基本步骤:  (1)找出公因式;  (2)提公因式并确定另一个因式:  ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;  ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;  ③提完公因式后,另一因式的项数与原多项式的项数相同。一、知识点总结:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单

7、项式的系数,字母指数和叫单项式的次数。如:的系数为,次数为4,单独的一个非零数的次数是0。2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。如:,项有、、、1,二次项为、,一次项为,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。3、整式:单项式和多项式统称整式。注意:凡分母含有字母代数式都不是整式。也不是单项式和多项式。4、多项式按字母的升(降)幂排列:如:按的升幂排列:按的降幂排列:按的升幂排列:按的降幂排列:5、同底数幂的乘

8、法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:6、幂的乘方法则:(都是正整数)幂的乘方,底数不变,指数相乘。如:幂的乘方法则可以逆用:即如:7、积的乘方法则:(是正整数)积的乘方,等于各因数乘方的积。如:(=8、同底数幂的除法法则:(都是正整数,且同底数幂相除,底数不变,指数相减。如:9、零指数和负指

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。