等差数列的性质总结

等差数列的性质总结

ID:12902473

大小:276.00 KB

页数:2页

时间:2018-07-19

等差数列的性质总结_第1页
等差数列的性质总结_第2页
资源描述:

《等差数列的性质总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、桑博教育教学设计主备:刘德志等差数列的性质总结1.等差数列的定义:(d为常数)();2.等差数列通项公式:,首项:,公差:d,末项:推广:.从而;3.等差中项(1)如果,,成等差数列,那么叫做与的等差中项.即:或(2)等差中项:数列是等差数列4.等差数列的前n项和公式:(其中A、B是常数,所以当d≠0时,Sn是关于n的二次式且常数项为0)特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项(项数为奇数的等差数列的各项和等于项数乘以中间项)5.等差数列的判定方法(1)定义法:若或(常数)是等差数列.(2)等差中项:数列是等差数列.⑶数列是等差数列(其中是常数)。(4)数列是等

2、差数列,(其中A、B是常数)。6.等差数列的证明方法定义法:若或(常数)是等差数列.7.提醒:(1)等差数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)设项技巧:①一般可设通项②奇数个数成等差,可设为…,…(公差为);③偶数个数成等差,可设为…,,…(注意;公差为2)8..等差数列的性质:(1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0.(2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。(3)当时,则有,特别

3、地,当时,则有.注:,-2-桑博教育教学设计主备:刘德志(4)若、为等差数列,则都为等差数列(5)若{}是等差数列,则,…也成等差数列(6)数列为等差数列,每隔k(k)项取出一项()仍为等差数列(7)设数列是等差数列,d为公差,是奇数项的和,是偶数项项的和,是前n项的和1.当项数为偶数时,2、当项数为奇数时,则(其中是项数为2n+1的等差数列的中间项).(8)、的前和分别为、,且,则.(9)等差数列的前n项和,前m项和,则前m+n项和(10)求的最值法一:因等差数列前项和是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。法二:(1)“首正”的递减等差数列中,前项

4、和的最大值是所有非负项之和即当由可得达到最大值时的值.(2)“首负”的递增等差数列中,前项和的最小值是所有非正项之和。即当由可得达到最小值时的值.或求中正负分界项法三:直接利用二次函数的对称性:由于等差数列前n项和的图像是过原点的二次函数,故n取离二次函数对称轴最近的整数时,取最大值(或最小值)。若Sp=Sq则其对称轴为注意:解决等差数列问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于和的方程;②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量.-2-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。