数形结合思想解析

数形结合思想解析

ID:12769351

大小:221.50 KB

页数:36页

时间:2018-07-18

数形结合思想解析_第1页
数形结合思想解析_第2页
数形结合思想解析_第3页
数形结合思想解析_第4页
数形结合思想解析_第5页
资源描述:

《数形结合思想解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、“数形结合思想”解析(一)“数形结合”思想的内涵诠释   “数形结合”的本质是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来进行思考,使“数”与“形”各展其长,优势互补,实现抽象思维与形象思维的结合,从而使复杂问题简单化,抽象问题具体化,起到优化解题途径的目的。  “数形结合”一词正式出现在华罗庚先生于1964年1月撰写的《谈谈与蜂房结构有关的数学问题》的科普小册子中,书中有一首小词:“数与形,本是相倚依,焉能分作两边飞。数无形时少直觉,形少数时难入微。数形结合百般好,隔离分家万事非;切莫忘,几何代数统一体,永远联系,切莫

2、分离!”这首小词形象、生动、深刻地指明了“数形结合”的价值,也揭示了“数形结合”的本质。“数形结合”是一种重要的数学思想,也是一种智慧的数学方法。我们在研究抽象的“数”的时候,往往要借助于直观的“形”,在探讨“形”的性质时,又往往离不开“数”。通过“数”与“形”的结合,我们对事物、规律的把握就能既容易又细微、深刻。(二)“数形结合思想”在教学中的作用。数形结合的方法具有双向性:借助“形”的生动和直观性认识“数”,即以“形”为手段,“数”为目的;或借助于“数”精确和规范地阐明“形”的属性,此时,“数”是手段。  1.以“形”助“数”。“形

3、”的广义性以及小学生数学学习中直观形象思维的主导地位决定了大部分数学知识学习需要“形”的支撑。  a.数学概念的建立借助“形”的直观。由于概念的抽象与概括性,教学时要向学生提供大量感性材料,而“形”的材料常常是最有效的。如在数小棒、搭多边形中认识整数,在等分图形中认识分(小)数;利用交集图理解公因数与公倍数等等。同样,运算的概念(如“除法”、“余数”)、数学术语(如“平均分”、“大于”)等等都需要“形”的参与。b.数学性质的探索依赖“形”的操作。数学性质是关于规律性的知识,应该让学生自主探索发现,而形的操作有助于发现规律。如教学“3的倍

4、数的特征”可作如下设计:让学生用9根小棒摆出三位数,判断是否是3的倍数;8根、6根呢?操作中学生发现,组成的三位数是否是3的倍数只与小棒的根数有关,而与摆的方式无关,根数就是各数位上数的和。又如,“分数的基本性质”、“小数的性质”可以让学生在对图形的等分中理解。c.数学规则的形成需要“形”作材料。数学规则在小学主要是有关演算过程的具体实施方法。规则学习是学生技能形成的先导。让学生明确规则的合理性、理解其推导过程的意义,不仅仅在于理解算理,更重要的在于学会学习,实现过程性目标。而数形结合能降低思维难度,让学生有信心和能力归纳出法则。如“2

5、0以内进位加法”是通过实物操作体会“凑十”的过程;分数乘法(如1/2×1/5)法则在折纸过程中归纳算法;长方形面积计算方法在“摆(面积单位)→数(小正方形个数)→想(个数与长宽关系)”等过程中获得。  d.解题思路的获得常用“形”来帮助。借助图形解题的最大优势是将抽象问题形象化。因为将数量信息反映在图形上,能直观表现数量间关系,从而获得解题思路。尤其在解较复杂的文字题、应用题(如“种植株数”、“截断”等)时,恰当选用线段图、示意图、集合图等等,是寻找解题途径最有效的手段之一。  2.以“数”解“形”。“形”具有形象直观的优势,但也有其粗

6、略、繁琐和不便于表达的劣势。只有以简洁的数学描述、形式化的数学模型表达“形”的特性,才能更好地体现数学抽象化与形式化的魅力,使儿童更准确地把握“形”。  a.对图形的认识要用数学语言的描述加以深化。如“直线”的教学,由于在生活中无法找到原型,画出来的也只是线段,而辅之以数学语言“直”、“无限”、“延伸”等,就能较好地建立相应的表象。又如“长方形”,学生从图形中感知获得的只是“长长的”、“方方的”,只有用数学语言揭示其特征(有4个角,都是直角;有4条边,对边相等),对长方形的认识才是深刻的。  b.几何图形的周长、面积、体积计算公式的归纳

7、都是儿童对形体直观知觉的深化。如对长方形面积大小观念的建立从定性到定量,从直观比较到数方格,从摆小正方形(面积单位)到发现面积与长宽的关系,最终获得面积计算公式,使儿童从更深层面上认识了长方形。c.对几何图形性质的判断有时需要通过计算才能获得正确结论。如:“周长相同的三角形、正方形和圆,哪个面积最大?哪个最小?”由于作图困难,凭图形直观难以判断,而通过具体计算,结论就不辨自明。(三)、渗透的方法与步骤•在运用数形结合思想分析和解决问题时,•第一要彻底明白一些概念和运算及图形的意义以及特征,对数学题目中的条件和结论既分析其几何意义又分析其

8、代数意义;•第二是建立关系,由数思形,以形想数,做好数形转化;•第三是正确解决问题。(四)、数形结合在教材中的分布点:数形结合思想在小学数学教材中的分布一年级下册七、认识时间例1~例2、练习十五二年级上册四

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。