数学是研究现实世界中数量关系和空间形式的

数学是研究现实世界中数量关系和空间形式的

ID:11613208

大小:73.23 KB

页数:71页

时间:2018-07-13

数学是研究现实世界中数量关系和空间形式的_第1页
数学是研究现实世界中数量关系和空间形式的_第2页
数学是研究现实世界中数量关系和空间形式的_第3页
数学是研究现实世界中数量关系和空间形式的_第4页
数学是研究现实世界中数量关系和空间形式的_第5页
资源描述:

《数学是研究现实世界中数量关系和空间形式的》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数学是研究现实世界中数量关系和空间形式的目录  一、结题报告……………………………………………………3    二、附件 1、开题报告…………………………………………………….27   2、活动记录…………………………………………………….29   3、心得体会…………………………………………………….32   4、组员互评……………………………………………………33   5、学生自我总结……………………………………………..36   6、导师评语……………………………………………………39    7、

2、学分认定表………………………………………………….40   8、试验与采访………………………………………………..41       走进奇妙数学世界 ──数学研究型课题报告         课题组组长:陈奕樽 课题组成员:侯智贤,陈义明 指导老师:张江涛       前言:   数学是研究现实世界中数量关系和空间形式的科学。简单的说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。1+1=2、概率、勾股定理、黄金分割点等都是数学中

3、极具代表性的知识,我们此次所做的研究性报告便是对这些知识的描述与探究。从中可以体验到真正的数学世界的奇妙与伟大。               1+1=2   小学生都知道的伟大公式   2004年10月,一条科学新闻在国内的媒体上不胫而走:“1+1=2入选最伟大的公式。”原来,英国著名的科学杂志《物理世界》此前举行了一场别开生面的评选活动,邀请世界各地的读者选出自己心目中最伟大、最喜爱的公式、定理或定律。结果,让很多人意外的是,1+1=2这个连小学生都知道的基本数学公式不仅入选,而且还高居第七。一个加

4、拿大读者说出了他的理由:“这个最简单的公式有着一种妙不可言的美感。”此次评选活动的主持者则这样评价到:“一个伟大公式的力量不仅论述了宇宙的基本特性并传达了标志性的信息,而且还在尽力孕育出更多自然界的科学突破。” 无独有偶,1971年,尼加拉瓜发行了一套纪念邮票《改变世界面貌的十个数学公式》,排在第一的赫然正是这个“1+1=2”。(看来它是很重要!!!) 1+1=2之所以如此重要,原因在于它是一条关于“数”的基础公式。没有它,就根本不会有数学,更不要说物理、化学等其他自然科学了。     数的出现 早在

5、蒙昧时代,人们就在对猎物的储藏与分配等活动中,逐渐产生了数的感觉。当一个原始人面对放在一起的3只羊、3个苹果或3支箭时,他会朦胧地意识到其中有一种共性。可以想象,他此时会是多么地惊讶。但是,从这种原始的感觉到抽象的“数”的概念的形成,却经过了极其漫长的时间。 一般认为,自然数的概念的形成可能与火的使用一样古老,至少有着30万年的历史。现在我们无法考证,人类究竟在什么时候发明了加法,因为那时没有足够详细的文献记录(也许文字也刚刚诞生)。但加法的出现无疑是为了在交换商品或战俘时进行运算。至于乘法和除法,则

6、必定是在加减法的基础上搞出来的。而分数应该是处于分割物体的需要。 应该说,当某个原始人第一个意识到1+1=2,进而认识到两个数相加得到另一个确定的数时,这一刻是人类文明的伟大时刻,因为他发现了一个非常重要的性质——可加性。这个性质及其推广正是数学的全部根基,它甚至说出数学为什么用途广泛的同时,告诉我们数学的局限性。 人们现在知道,世界上存在三类不同的事物。一类是完全满足可加性的量。比如质量,容器里的气体总质量总是等于每个气体分子质量之和。对于这些量,1+1=2是完全成立的。第二类是仅仅部分满足可加性的

7、的量。比如温度,如果把两个容器的气体合并在一起,则合并后气体的温度就是原来气体各自温度的加权平均(这是一种广义的“相加”)。但这里就有一个问题:温度这个量不是完全满足可加性的,因为单个分子没有温度。   世界上还有一些事物,他们是彻底拒绝可加性的,比如生命世界里的神经元。我们可以将容器里的分子分到两个容器,使得每个容器里的气体仍然保持有宏观量——温度、压强等。但是,我们对神经元不能这样做。我们每个人都会产生幸福、痛苦之类的感觉。生物学告诉我们,这些感觉是由神经元产生的。但是,我们却不能说,某个神经元会

8、产生多少幸福或痛苦。不仅每个神经元并不具备这种             性质,而且我们也不能将大脑劈成两半,使得每个半球都有幸福或者痛苦感。神经元不是分子——分子可以随时分开或者重组,神经元具有协调性,一旦将他们分开,生命就会终结,不可能再组合(你可以自我实验下-.-)。 目前的数学尽管已发展了5000年,却仍主要建立在可加性的基础之上。遇到这些不满足可加性的问题时,我们常常觉得很难用数学来处理。这正反映了数学的局限性。     另一种“1+1”   数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。