资源描述:
《超级画板《动态几何教程》5函数图像》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、超级画板《动态几何教程》5函数图像导读:就爱阅读网友为您分享以下“超级画板《动态几何教程》5函数图像”的资讯,希望对您有所帮助,感谢您对92to.com的支持!图5-7图中还测量了判别式b2-4ac的值。当判别式为负时,曲线和x轴没有交点。此外,这里的标题是漂亮的“可变换文本”,可以用文本作图的“文本”类函数命令TransformText(二次函数的图像);来实现。用可变化文本制作的文字,可以填充,可以选择后拖动角上的“把手”来改变其长宽。46当我们选择了曲线并对它跟踪时,有时可能希望停止跟踪,或又恢复跟踪。在对象工
2、作区单击该“跟踪”条目前的小方框,可以在停止跟踪和恢复跟踪之间切换。若不想在对象工作区操作,可以作一个按钮来实现跟踪的显示和隐藏,方法是使用“动态alpha”功能和变量动画。在前一章也介绍过了。总之,制作动态的函数图像的所有操作都是前面讲过的。这里是复习。类似的方法,在文件5-3指数函数族.zjz中,可以看出函数y=ax的图像当a变化时的变化情形,如图5-8.图5-8而文件5-4指数函数和对数函数.zjz则将指数函数和对数函数做了对比,如图5-9。图5-9至于幂函数,它的情形要复杂一些。随着幂指数k的不同,幂函数y=
3、xk的定义域是不同的。当k取一般实数值时,其定义域为(0,+∞);而当k为整数时,其定义域为(-∞,+∞)。文件5-5幂函数族的图像.zjz的第一页,显示了k取一般实数值的情形。用动画按钮驱动k并对图像跟踪,如图5-10。该文件的第2页和第3页,则对应于k为偶数或奇数的情形。图5-10在三角函数中,最有用的是一般正弦波函数y=A46sin(ωx+φ);作出随3个参数改变而变化的这样的图像的方法,在不少资料中有所讨论。用超级画板作这样的图像,不过是一个简单的常规操作。见文件5-6一般正弦波.zjz的第一页,如图5-11
4、。图5-11注意这里的3个参数A、ω、φ,在输入函数表达式、建立变量尺以及制作动画按钮时,实际用的参数是a、b、c。用动画按钮驱动a、b、c,可以得到指定的正弦曲线。如何通过参数的变化把基本的正弦函数y=sinx的曲线变为某种特定的正弦曲线,是中学数学教材的传统内容之一。上述文件的第2页,提供了实现这种转化的具体操作,如图5-12。图5-12在图5-12中,有5条曲线。4条虚曲线是固定不动的,它们的表达式用同色的文本框分别标出在右上角。一条实曲线是可以变化的,表达式在上方,就是y=a46sin(bx+c)。自上而下顺
5、次单击3个动画按钮的主钮,驱动3个参数a、b、c分别变化,则红色的实曲线通过向左平移、沿x轴压缩、沿y轴放大由一条曲线顺次变为另外3条;再自下而上顺次单击3个动画按钮的副钮,则曲线通过沿y轴压缩,沿x轴放大,向右平移而复原。从属性对话框中,可以查到这些曲线的方程和定义域。注意,可变化的实曲线,它的定义域是可变化的参数。[习题5-3]观察下面的一列文本作图函数命令,这些命令运行时将作出那些对象?命令中的数字有何意义?其中哪些命令可以用智0,,,,x_2);Point(-b/(2*a),(4*a*c-b)/(4*a),
6、,,,D);Variable(k,0,20,);TransformText(二次函数的曲线);Foot(6,3,);Foot(7,3,);Foot(8,3,);Segment(6,14,);Segment(7,15,);Segment(8,16,);MeasureExpress(floor(k),k);MeasureExpress(b-4*a*c,b-4ac);Text(y=$bl{a,21}x+$bl{b,21}x+$bl{c,21});Trace(5,);AnimationVar(a,a:a->5);Ani
7、mationVar(b,b:b->5);AnimationVar(c,c:c->5);AnimationVar(a,a:-k->k);AnimationVar(b,b:-k->k);AnimationVar(c,c:-k->k);请把这些命令复制到文本作图的对话框的适当的栏里运行一遍,以证实自己的结论。[习题5-4]用一列文本作图函数命令,实现图5-12所示的课件。三正弦曲线和正切曲线的生成46任意角的三角函数的定义和单位圆上的点密切相关。让点在单位圆上运动,利用单位圆上对应线段随动点的变化而变化的情形,动态地画出三
8、角函数的图像,是多媒体教学的传统内容之一。使用超级画板的文本作图功能,很容易生成这样的课件。打开本书配套资源中的文件5-7正弦和正切曲线的生成的第一页,单击动画按钮,可以看到点6在单位圆上运动,点7在x轴上运动,过点6而平行于x轴的直线和过点7而垂直于x轴的直线交于点8,点8的踪迹在正弦曲线上。如图5-13。图5-13上述课件可以由执行下列系列