欢迎来到天天文库
浏览记录
ID:11307287
大小:94.06 KB
页数:5页
时间:2018-07-11
《充分条件与必要条件》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《充分条件与必要条件》教案一、背景分析教学重点:充分条件、必要条件和充要条件三个概念的定义。教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.学生对”充分条件”的概念较易接受,而必要条件的概念都难以理解.对于“B=>A”,称A是B的必要条件难于接受,A本是B推出的结论,怎么又变成条件了呢?对这学生难于理解。教学关键:找出A、B,根据定义判断A=>B与B=>A是否成立。教学中,要强调
2、先找出A、B,否则,学生可能会对必要条件难以理解。二、教学目标设计:(一)知识目标:1、正确理解充分条件、必要条件、充要条件三个概念。2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。3、在理解定义的基础上,可以自觉地对定义进行转化,转化成推理关系及集合的包含关系。(二)能力目标:1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。3、培养学生的建构能力:“善建构”,通过反复的观察分析和类比,对归纳出的结论,建构于自己的
3、知识体系中。(三)情感目标:1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。三、教学结构设计:数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。我对本节课
4、的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。整体思路为:教师创设情境,激发兴趣,引出课题引导学生分析实例,给出定义例题分析(采用开放式教学)知识小结扩展例题练习反馈四、教学过程设计:第一,创设情境,激发兴趣,引出课题:考虑到高一学生学习这一章的知识储备不足,为了让学生更易接受这一节内容,我利用日常生活中的具体事例来提出本课的问题,并与学生共同利用原有的知识分析,事例中包括几个问题,为后面
5、定义的分析埋下伏笔。例1(1):“做一件衬衫,需用布料,到布店去买,问营业员应该买多少?他说买3米足够了。”这样,就产生了“3米布料”与“做一件衬衫够不够”的关系。用这个事件目的是为了第二部分引导学生得出充分条件的定义。这里要强调该事件包括:A:有3米布料;B:做一件衬衫够了。例1(2)“一人病重,呼吸困难,急诊住院接氧气。”就产生了“氧气”与“活命与否”的关系。用这个事件的目的是为了第二部分引导学生得出必要条件的定义。这里要强调该事件包括:A:接氧气;B:活了。用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣
6、和深入领会概念的内容,特别是它的必要性。第二,引导学生分析实例,给出定义。在第一部分激发起学生的学习兴趣后,紧接着开展第二部分,引导学生分析实例,让学生从事例中抽象出数学概念,得出本节课所要学习的充分条件和必要条件的定义。在引导过程中尽量放慢语速,结合事例帮助学生分析。得出定义之后,这里有必要再利用本课前面两节的“逻辑联结词”和“四种命题”的知识来加强对必要条件定义的理解。(用前面的例子来说即:“活了,则说明在输氧”)可记作:。还应指出的是“必要条件”的定义,有如绕口令,要一次廓清,不可拖泥带水。这里,只要一下子“定义”清楚了,下边再解释“,A是B的必
7、要条件”是怎么回事。这样处理,学生更容易接受“必要”二字。(因无A则无B,故欲有B,A是必要的)。当两个定义分别给出后,我又对它们之间的区别加以分析说明,(充分条件可能会有多余,浪费,必要条件可能还不足(以使事件B成立))从而顺理成章地引出充要条件的定义(既是必要条件,又是充分条件,就称为充分必要条件,简称充要条件,记作:。(不多不少,恰到好处)。使学生在此先对两个充分条件和必要条件两个概念的不同有了第一次的认识,第三部分再利用具体的数学事例来强化。第三,例题分析:在分析各组题时都注意,让学生先养成找出A、B的习惯,以使学生突破学习难点:“A=>B”,
8、称B是A的必要条件,这里最好能让学生避免将A、B理解成条件和结论,否则学生就可能会有这样的想法
此文档下载收益归作者所有