“杨辉三角”与二项式系数的性质-教学设计-浠水实验高中-周少雄

“杨辉三角”与二项式系数的性质-教学设计-浠水实验高中-周少雄

ID:11278117

大小:185.00 KB

页数:5页

时间:2018-07-11

“杨辉三角”与二项式系数的性质-教学设计-浠水实验高中-周少雄_第1页
“杨辉三角”与二项式系数的性质-教学设计-浠水实验高中-周少雄_第2页
“杨辉三角”与二项式系数的性质-教学设计-浠水实验高中-周少雄_第3页
“杨辉三角”与二项式系数的性质-教学设计-浠水实验高中-周少雄_第4页
“杨辉三角”与二项式系数的性质-教学设计-浠水实验高中-周少雄_第5页
资源描述:

《“杨辉三角”与二项式系数的性质-教学设计-浠水实验高中-周少雄》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、“杨辉三角”与二项式系数的性质教学设计——人教A版数学选修2-3第1章第3节第2课时湖北省黄冈市浠水实验高级中学周少雄一、教材背景分析1.教材的地位和作用《“杨辉三角”与二项式系数的性质》是全日制普通高级中学教科书人教A版选修2-3第1章第3节第2课时.教科书将二项式系数性质的讨论与“杨辉三角”结合起来,是因为“杨辉三角”蕴含了丰富的内容,由它可以直观看出二项式系数的性质,“杨辉三角”是我国古代数学重要成就之一,显示了我国古代人民的卓越智慧和才能,应抓住这一题材,对学生进行爱国主义教育,激励学生的民族自豪感.本节内容以前面学习的二项式定理为基础

2、,由于二项式系数组成的数列就是一个离散函数,引导学生从函数的角度研究二项式系数的性质,便于建立知识的前后联系,使学生体会用函数知识研究问题的方法,可以画出它的图象,利用几何直观、数形结合、特殊到一般的数学思想方法进行思考,这对发现规律,形成证明思路等都有好处.这一过程不仅有利于培养学生的思维能力、理性精神和实践能力,也有利于学生理解本节课的核心数学知识,发展其数学应用意识.研究二项式系数这组特定的组合数的性质,对巩固二项式定理,建立相关知识之间的联系,进一步认识组合数、进行组合数的计算和变形都有重要的作用,对后续学习微分方程等也具有重要地位.2

3、.学情分析知识结构:学生已学习两个计数原理和二项式定理,再让学生课前探究“杨辉三角”包含的规律,结合“杨辉三角”,并从函数的角度研究二项式系数的性质.心理特征:高二的学生已经具备了一定的分析、探究问题的能力,恰时恰点的问题引导就能建立知识之间的相互联系,解决相关问题.3.教学重点与难点重点:体会用函数知识研究问题的方法,理解二项式系数的性质.5难点:结合函数图象,理解增减性与最大值时,根据n的奇偶性确定相应的分界点;利用赋值法证明二项式系数的性质.关键:函数思想的渗透.二、教学目标1.通过课前组织学生开展“了解杨辉三角、探究与发现杨辉三角包含的

4、规律”的学习活动,让学生感受我国古代数学成就及其数学美,激发学生的民族自豪感.2.通过学生从函数的角度研究二项式系数的性质,建立知识的前后联系,体会用函数知识研究问题的方法,培养学生的观察能力和归纳推理能力.3.通过体验“发现规律、寻找联系、探究证明、性质运用”的学习过程,使学生掌握二项式系数的一些性质,体会应用数形结合、特殊到一般进行归纳、赋值法等重要数学思想方法解决问题的“再创造”过程.4.通过恰时恰点的问题引入、引申,采用学生课前自主探究、课上合作探究、课下延伸探究的学习方式,培养学生问题意识,提高学生思维能力,孕育学生创新精神,激发学生

5、探索、研究我国古代数学的热情.三、教法选择和学法指导教法:问题引导、合作探究.学法:从课前探究和课上展示中感知规律,结合“杨辉三角”和函数图象性质领悟性质,在探究证明性质中理解知识,螺旋上升地学习核心数学知识和渗透重要数学思想.四、教学基本流程设计展示成果话杨辉感知规律悟性质联系旧知探新知合作交流议方法反馈升华拨思路悬念小结再求索5五、教学过程1.展示成果话杨辉课前开展学习活动:了解“杨辉三角”的历史背景、地位和作用,探究与发现“杨辉三角”包含的规律.(1)学生从不同的角度畅谈“杨辉三角”,对它有何了解及认识.(2)各小组展示探究与发现的成果—

6、—“杨辉三角”包含的一些规律.【设计意图】引导学生开展课外学习,了解“杨辉三角”,探究与发现“杨辉三角”包含的规律,弘扬我国古代数学文化;展示探究与发现的杨辉三角的规律,为学习二项式系数的性质埋下伏笔.2.感知规律悟性质通过课外学习,同学们观察发现了杨辉三角的一些规律,并且知道杨辉三角的第行就是展开式的二项式系数,展开式的二项式系数具有杨辉三角同行中的规律——对称性和增减性与最大值.【设计意图】寻找二项式系数与杨辉三角的关系,从而让学生理解二项式系数具有杨辉三角同行中的规律.3.联系旧知探新知【问题提出】怎样证明展开式的二项式系数具有对称性和增

7、减性与最大值呢?【问题探究】探究:(1)展开式的二项式系数,可以看成是以为自变量的函数吗?它的定义域是什么?(2)画出和7时函数的图象,并观察分析他们是否具有对称性和增减性与最大值.(3)结合杨辉三角和所画函数图象说明或证明二项式系数的性质.5对称性:与首末两端“等距离”的两个二项式系数相等..增减性与最大值:,所以相对于的增减情况由决定.由可知,当时,二项式系数是逐渐增大的.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值.当的偶数时,中间的一项取得最大值;当是奇数时,中间的两项,相等,且同时取得最大值.【设计意图】教师引导学生用函数思

8、想探究二项式系数的性质,学生画图并观察分析图象性质;运用特殊到一般、数形结合的数学思想归纳二项式系数的性质,升华认识;通过分组讨论、自主探究、合作交流

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。