欢迎来到天天文库
浏览记录
ID:11023682
大小:62.50 KB
页数:4页
时间:2018-07-09
《经验模态分解算法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、经验模态分解摘要——黄提出了经验模态分解(EMD)的数据处理方法,也对这种技术应用的有效性进行了讨论。许多变种算法(新的停止准则,即时版本的算法)也产生出来。数值模拟用来作经验性的评估执行单元运用于语音识别和分离方面,得出的实验结果认为这种方法是根据自适应的常数Q的滤波器组提出的。1.介绍近来,一种被称为EMD的新的非线性方法被黄等人提出,这种方法能够自适应的把非平稳信号分解成一系列零均值的AMFM信号(调频调幅)的总和。尽管这种方法经常有着显著的效果,但是这个方法在算法方面的定义是困难的,因此这种方法没有
2、作为一种分析方法得到承认,一般一种分析方法是需要有理论分析和性能评估。因此本文的目的是用实验的方式使得该算法更容易理解,并且提出了基于原算法的各种各样的改进的算法。设置实验性能评估的许多初始条件是为了获取一种有效的分解并且使得该算法更容易理解。2.EMD基础EMD的出发点是把信号内的震荡看作是局部的。实际上,如果我们要看评估信号x(t)的2个相邻极值点之间的变化(2个极小值,分别在t-和t+处),我们需要定义一个(局部)高频成分{d(t),t-<=t<=t+}(局部细节),这个高频成分与震荡相对应,震荡在2
3、个极小值之间并且通过了极大值(肯定出现在2极小值之间)。为了完整这个图形,我们还需要定义一个(局部)低频成分m(t)(局部趋势),这样x(t)=m(t)+d(t),(t-<=t<=t+)。对于整个信号的所有震动成分,如果我们能够找到合适的方法进行此类分解,这个过程可以应用于所有的局部趋势的残余成分,因此一个信号的构成成分能够通过迭代的方式被抽离出来。对于一个给定的信号x(t),进行有效的EMD分解步骤如下:1)找出想x(t)的所有极值点2)用插值法对极小值点形成下包络emint(t),对极大值形成上包络em
4、ax(t)3)计算均值m(t)=(emint(t)+emax(t))/24)抽离细节d(t)=x(t)-m(t)5)对残余的m(t)重复上诉步骤在实际中,上述过程需要通过一个筛选过程进行重定义,筛选过程的第一个迭代步骤是对细节信号d(t)重复从1-4步,直到d(t)的均值是0,或者满足某种停止准则才停止迭代。一旦满足停止准则,此时的细节信号d(t)就被称为IMF,d(t)对应残量信号用第5步计算。通过以上过程,极值点的数量伴随着残量信号的产生而越来越少,整个分解过程会产生有限个模函数(IMF)。模函数和残量
5、信号可以进行谱分析,但是这个谱分析不能从狭隘的角度来看。首先,需要强调一下,即使是谐振荡,应用上述方法产生的高频和低频也只是局部的,没办法产生一个预设的频带过滤(例如小波变换)进行辨识。选择的模函数对应了一个自适应(依赖于信号自身的)的时变滤波器。一个这方面的例子:一个信号由3个部分组成(这3个部分是时间频率上都明显叠加的信号),用上述方法成功的分解了。分解如图1所示。这个例子的程序是emd_fmsin2.m另外一个例子(emd_sawtooth.m)强调了EMD潜在的非谐振性质如图2所示。在这些例子中,线
6、性的非线性的震荡都能被有效的识别和分离。因而,任何谐振分析(傅里叶,小波,…)可能结束在同类文章中,更少的紧凑和更少的实际意义的分解。3.算法的改进正如第二部分所定义的,EMD算法依赖于一系列的选项,这些选项需要用户控制,并且需要专业的知识。在此我们的目的找出更准确的选项,并且给予原来的算法进行改进。3.1采样率,插值方法和边缘效应EMD的基础操作是估计出上包络和下包络作为极值点之间的插值曲线。选择的插值法的性能是非常重要的参数。我们的实验是要确定三次样条插值法作为首选。其他的插值法(线性的或者多项式的)会
7、增加筛选的迭代次数,并且会产生过分解信号,这些过分解信号散布在临近的模函数内。其次,自从这个算法运用到实际的离散时间信号中,需要注意的是极值点必须能够正确的找出,其必要条件是要求大量的过采样(关于这点将会在第4段进行进一步的研究)最后,边界状态也要进行考虑,因为极小的的误差会扩散到有限的测量数据长度内。作为这方面的考量,通过镜像沿拓加入极值点到边界附近能够得到较好的结果。3.2筛选的停止准则当筛选过程结束时,抽取的模函数会是满意的。在这方面有2个必备的条件:第一个是极值点数和过零点数最多相差1个,第二个是上
8、包络和下包络的均值必须近似等于零或者满足某种准则。均值的幅度有多小需要通过计算与对应的模函数的幅值,但是用一个过低的阈值来终止迭代过程会导致如前面提到的问题(过迭代产生过分解)。作为一个改进的准则,我们目前所认识的,我们提出(在emd.m)一个新的准备建立在2个阈值上的。目的是保证整体的小的波动在整体大的过程中有意义。这个总量引进了模幅值a(t)=(emax(t)-emin(t))/2,和估计函数o(t)=
9、m(
此文档下载收益归作者所有