高中数学课堂教学中创新能力培养的实践与思考

高中数学课堂教学中创新能力培养的实践与思考

ID:10379236

大小:72.00 KB

页数:0页

时间:2018-07-06

高中数学课堂教学中创新能力培养的实践与思考_第页
预览图正在加载中,预计需要20秒,请耐心等待
资源描述:

《高中数学课堂教学中创新能力培养的实践与思考》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、高中数学课堂教学中创新能力培养的实践与思考随着数学教材改革的深入开展,提高学生能力的问题越来越引起人们的重视。为了进一步提高数学学习的质量,有必要对能力问题开展进一步的研究.心理学研究指出,能力分一般能力和特殊能力。一般能力是指顺利完成各种活动所必备的基本心理能力,特殊能力是指顺利完成某种特殊活动所必备的能力。在数学教育领域内,一般能力包括学习新的数学知识的能力,探究数学问题的能力,应用数学知识解决实际问题的能力,提高这些能力将大大推动学生素质的提高。  数学创新能力是数学的一般能力,包括对数学问题的质疑能力、建立数学模型的能力(即把实际

2、问题转化为数学问题的能力)、对数学问题猜测的能力等,在数学教学过程中,教师应特别重视对学生创新能力的培养,使每一个学生都养成独立分析问题、探索问题、解决问题和延伸问题的习惯。让所有的学生都有能力提出新见解、发现新思路、解决新问题。数学创新能力的培养相比数学知识的传授更重要,数学创新能力的培养有利于学生形成良好的数学的思维品质以及运用数学思想方法的能力。一、培养学生善思、善想、善问的数学品质,提高质疑能力  就研究性学习而言,需要培养学生发现问题和提出问题的能力,而发现问题和提出问题需要一定的方法,这些方法应在课堂教学中逐步培养。高中学生对数

3、学知识的获得大多表现在记忆和解题上,缺乏对知识间的联系和分析,被动接受的多,主动反思的少。  如我在讲授《数学归纳法》一课时,有意设计了下面三个问题。问题1:今天,据观察第一个到学校的是男同学,第二个到学校的也是男同学,第三个到学校的还是男同学,于是,我得出:这所学校里的学生都是男同学。(学生:窃窃私语,哄堂大笑——以偏概全)。问题2:数列{an}的通项公式为an=(n2-5n+5)2,计算得a1=1,a2=1,a3=1,可以猜出数列{an}的通项公式为:an=1(此时,绝大部分学生不作声——默认,有一学生突然说:当n=5时,an=25,

4、a5≠1,这时一位平时非常谨慎的女生说:“老师今天你第二次说错了”)。问题3:三角形的内角和为180°,四边形的内角和为2*180°,五边形的内角和为3*180°,……,显然有:凸n边形的内角和为(n-2)*180°。(说到这里,我说:“这次老师没有讲错吧?”)上述三个问题思维方式都是从特殊到一般,问题1、2得到的结论是错的,那么问题3是否也错误?为什么?(学生茫然,不敢质疑)。合理地利用材料,提出好的问题,引出课题,揭示了本节知识的必要性。通过让学生自主参与知识产生、形成的过程,获得亲身体验,逐步形成一种在日常学习与生活中爱置疑、乐探究的

5、心理倾向,激发探索和创新的积极欲望。不仅使学生理解了归纳法,而且掌握了分析、判断、研究一般问题的方法。  高中学生的数学创新能力主要表现在:①在解题上提出新颖,简洁,独特方法。②运用类比的方法对某些结论进行推广和延伸,获的更一般的结论。如2000年上海秋季高考第题:“在等差数列{an}中,若a10=0,则有等式a1+a2+……an=a1+a2+……+a19-n(n<19,n∈N=成立。类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式______成立”。用有关等差数列和等比数列概念和类比的方法,辩明等差数列和式两边元素下标的

6、关系;运用类比的手段,将已知等差数列的性质拓展到等比数列的性质,无疑发现了解决上述问题的通道,这是一个创新的过程。类比的结论不一定都正确,对问题的质疑比单一的解题,其效果是不一样的,如在等差数列{an}中,sm=a1+a2+……+am,则sm,s2m-sm,s3m-s2m成等差数列,能否类比到等比数列{bn}中,sm,s2m-sm,s3m-s2m成也等比数列,许多学生可能会证明它是正确,但这结论恰恰是错误的(当a1=2,公比q=-1时,s2=s4-s2=s6-s4=0)。再如,2000年上海春季高考题:设f(x)为定义在R上的偶函数,当

7、x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线。又在y=f(x)的图象中有一部分是顶点在(0,2),且过(-1,1)的一段抛物线,试写出f(x)的表达式,并作出图象。高考结束以后就有学生问:抛物线是否仅二次函数的图象?如果不是,那么它的解不唯一。③通过对问题的变式引出新的问题进行探索。譬如,在求数列an=2n-1的前n项和时。可以引出数列{a3n}和{α3n}的前n项和,让学生进行充分的讨论,前一问题仍是等差数列的前n项和,但首项、公差都已经变化,认知上没有冲突,学生是可以解决的;后一问题如果学生不深入研究数列的通项公式

8、,那么他就无法求此数列的前n项和.探究等差数列相关知识,对学生而言应是创新性思维;如果再将产生的结论向等比数列联想,可使这种创新思维得到延伸,达到不断激发学生创新欲望之目的。二

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。