资源描述:
《概率论与数理统计教程习题三参考答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三章多维随机变量及其分布习题3.11.100件商品中有50件一等品、30件二等品、20件三等品.从中任取5件,以X、Y分别表示取出的5件中一等品、二等品的件数,在以下情况下求(X,Y)的联合分布列.(1)不放回抽取;(2)有放回抽取.解:(1)(X,Y)服从多维超几何分布,X,Y的全部可能取值分别为0,1,2,3,4,5,⎛50⎞⎛30⎞⎛20⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝i⎠⎝j⎠⎝5−i−j⎠且P{X=i,Y=j}=,i=0,1,2,3,4,5;j=0,L,5−i,⎛100⎞⎜⎟⎜⎟⎝5⎠故(X,Y)的联合分布列
2、为Y012345X00.00020.00190.00660.01020.00730.001910.00320.02270.05490.05390.0182020.01850.09270.14160.06610030.04950.15620.113200040.06120.0918000050.028100000(2)(X,Y)服从多项分布,X,Y的全部可能取值分别为0,1,2,3,4,5,5!ij5−i−j且P{X=i,Y=j}=×0.5×0.3×0.2,i=0,1,2,3,4,5;j=0,L,5−i,i!⋅j!⋅(
3、5−i−j)!故(X,Y)的联合分布列为Y012345X00.000320.00240.00720.01080.00810.0024310.0040.0240.0540.0540.02025020.020.090.1350.06750030.050.150.112500040.06250.09375000050.03125000002.盒子里装有3个黑球、2个红球、2个白球,从中任取4个,以X表示取到黑球的个数,以Y表示取到红球的个数,试求P{X=Y}.⎛3⎞⎛2⎞⎛2⎞⎛3⎞⎛2⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜
4、⎟⎜⎟⎝1⎠⎝1⎠⎝2⎠⎝2⎠⎝2⎠639解:P{X=Y}=P{X=1,Y=1}+P{X=2,Y=2}=+=+=.⎛7⎞⎛7⎞353535⎜⎟⎜⎟⎜⎟⎜⎟⎝4⎠⎝4⎠3.口袋中有5个白球、8个黑球,从中不放回地一个接一个取出3个.如果第i次取出的是白球,则令Xi=1,否则令Xi=0,i=1,2,3.求:1(1)(X1,X2,X3)的联合分布列;(2)(X1,X2)的联合分布列.8762887570解:(1)P{(X,X,X)=(0,0,0)}=⋅⋅=,P{(X,X,X)=(0,0,1)}=⋅⋅=,1231231312
5、111431312114298577058770P{(X,X,X)=(0,1,0)}=⋅⋅=,P{(X,X,X)=(1,0,0)}=⋅⋅=,1231231312114291312114298544058440P{(X,X,X)=(0,1,1)}=⋅⋅=,P{(X,X,X)=(1,0,1)}=⋅⋅=,123123131211429131211429548405435P{(X,X,X)=(1,1,0)}=⋅⋅=,P{(X,X,X)=(1,1,1)}=⋅⋅=;12312313121142913121114387148510
6、(2)P{(X,X)=(0,0)}=⋅=,P{(X,X)=(0,1)}=⋅=,12121312391312395810545P{(X,X)=(1,0)}=⋅=,P{(X,X)=(1,1)}=⋅=.1212131239131239X201X1014/3910/39110/395/394.设随机变量Xi,i=1,2的分布列如下,且满足P{X1X2=0}=1,试求P{X1=X2}.X−101iP0.250.50.25解:因P{X1X2=0}=1,有P{X1X2≠0}=0,即P{X1=−1,X2=−1}=P{X1=−1,X2
7、=1}=P{X1=1,X2=−1}=P{X1=1,X2=1}=0,分布列为XX22−101p−101pi⋅i⋅XX11−1000.25−100.2500.2500.500.2500.250.51000.25100.2500.25p0.250.50.25p0.250.50.25⋅j⋅j故P{X1=X2}=P{X1=−1,X2=−1}+P{X1=0,X2=0}+P{X1=1,X2=1}=0.5.设随机变量(X,Y)的联合密度函数为⎧k(6−x−y),08、(2)P{X<1,Y<3};(3)P{X<1.5};4(4)P{X+Y≤4}.2+∞+∞解:(1)由正则性:∫∫p(x,y)dxdy=1,得−∞−∞x4022242⎛y⎞222∫∫0dx2k(6−x−y)dy=∫0dx⋅k⎜⎜6y−xy−⎟⎟=∫0k(6−2x)dx=k(6x−x)0=8k=1,⎝2⎠221故k=;8y3213111⎛y⎞4(2