欢迎来到天天文库
浏览记录
ID:10241616
大小:1009.00 KB
页数:29页
时间:2018-06-13
《矩阵初等变换及其应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、学号:哈尔滨师范大学学士学位论文题目矩阵初等变换及其应用学生焦阳指导教师林立军副教授年级2008级专业数学与应用数学系别数学系学院数学科学学院2012年4月25日哈尔滨师范大学学士学位论文开题报告论文题目矩阵初等变换及其应用学生姓名焦阳指导教师林立军副教授年级2008级专业数学与应用数学2011年11月25日课题来源:矩阵初等变换及其应用课题研究的目的和意义:由于矩阵的初等变换贯穿着代数学习的始终,那么掌握好矩阵的初等变换对我们学习好高等代数有很大帮助。本文对初等变换的应用做了总结,使读者能够系统地了解初等变
2、换在不同地方的应用。方便读者日后学习中使用初等变换解题。很多复杂、繁琐的问题经过初等变换都可以化为简单、易于解决的问题。所以对于矩阵的初等变换的研究具有非常重要的意义。国内外同类课题研究现状及发展趋势:课题研究的主要内容和方法,研究过程中的主要问题和解决办法:本文主要探究矩阵的初等变换在高等代数、线性代数中的应用。总结了矩阵的初等变换的一些基本概念和重要结论,然后根据这些概念和结论,把矩阵的初等变换的方法应用到解决各类问题当中。并把初等变换应用的具体方法提炼出来,方便日后解题使用。在研究过程中,方法的总结是最
3、主要的内容,也是研究的目的。经过对大量习题的研究、比对,对参考文献的研究,最后将初等变换在具体问题中的具体方法用最简洁、直观的方式总结出来。课题研究起止时间和进度安排:起止时间:2011年11月25日至2012年4月25日。进度安排:1、2011年11月25日定题2、2011年11月26-12月1日拟定大纲3、2011年12月2日-12月31日资料查询,写好开题报告。4、2012年1月1日-2月1日理论分析。5、2012年2月2日到4月1日形成初稿,并修改论文。6、2012年4月2日到4月25日定稿及准备答辩
4、。课题研究所需主要设备、仪器及药品:无外出调研主要单位,访问学者姓名:无指导教师审查意见:同意开题。指导教师(签字) 年月教研室(研究室)评审意见:同意开题。____________教研室(研究室)主任(签字) 年月院(系)审查意见:同意开题。____________院(系)主任(签字) 年月学士学位论文题目矩阵初等变换及其应用学生焦阳指导教师林立军副教授年级2008级专业数学与应用数学系别数学系学院数学科学学院2012年4月25日矩阵初等变换及其应用焦阳摘要:初等变换是高等代数和线性代数学
5、习过程中非常重要的,使用非常广泛的一种工具。本文列举了矩阵初等变换的几种应用,包括求矩阵的秩、判断矩阵是否可逆及求逆矩阵、判断线性方程组解的状况、求解线性方程组的一般解及基础解系、证向量的线性相关性及求向量的极大无关组、求向量空间两个基的过渡矩阵、化二次型为标准形。并用具体例子说明矩阵初等变换在以上几种应用中是如何运用的。关键词:矩阵初等变换初等矩阵在代数的学习过程中,我发现矩阵的初等变换有许多应用,几乎贯穿着始终。本文将对矩阵的初等变换进行介绍并以具体例子说明矩阵初等变换的七种应用。虽然这些计算格式有不少类
6、似之处,但是也指出由于这些计算格式有不同的原理,所以它们的应用也有一些明显的区别。定义1:矩阵的行(列)初等变换是指对一个矩阵施行的下列变换:(1)交换矩阵的两行(列)(交换第i,j两行(列),记作);(2)用一个不等于零的数乘矩阵的某一行(列)即用一个不等于零的数乘矩阵的某一行(列)的每一个元素(用数k乘以第i行(列),记作;(3)用某一个数乘矩阵的某一行(列)后加到另一行(列),即用某一数乘矩阵的某一行(列)的每一个元素再加到另一行(列)的对应元素上(第i行(列)k倍加到第j行(列),记作。初等行、列变换
7、统称为初等变换。定义2:对单位矩阵I仅施以一次初等变换后得到的矩阵称为相应的初等矩阵,分别记为第1、2、3类行(列)初等矩阵为,,,有======初等变换与初等矩阵之间有下列基本性质。定理1:对mn矩阵A,作一次初等行(列)变换所得的矩阵B,等于以一个相应的m阶(n阶)初等矩阵左(右)乘A。下面将介绍几种实用初等变换的方法。由于侧重实际应用方面,在表述方面着重讲清基本概念、原理和计算方法,避免繁琐、冗长的理论推导和证明,力求简明准确;将抽象的理论,从具体问题入手,通过典型例题对基本概念、所涉及的方法进行融会贯
8、通。1、求矩阵的秩由于初等变换不改变矩阵的秩,如果我们要求一个矩阵的秩,可以先利用行初等变换将其化为行阶梯形矩阵。行阶梯形矩阵的秩等于它的非零行数,行阶梯形矩阵的秩就是原矩阵的秩。这样我们就可以求出原矩阵的秩。定义1:在mn矩阵A中,任取k行k列(km,kn),位于这些行列交叉处的个元素,不改变它们在A中所处的位置次序二而得到的k阶行列式,称为A的k阶子式。定义2:矩阵A的非零子式的最高阶数,称为矩
此文档下载收益归作者所有