中考数学专题复习:函数综合题5

中考数学专题复习:函数综合题5

ID:10220186

大小:521.00 KB

页数:15页

时间:2018-06-12

中考数学专题复习:函数综合题5_第1页
中考数学专题复习:函数综合题5_第2页
中考数学专题复习:函数综合题5_第3页
中考数学专题复习:函数综合题5_第4页
中考数学专题复习:函数综合题5_第5页
资源描述:

《中考数学专题复习:函数综合题5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、中考数学专题复习:函数综合题51.如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形.若存在,求点P的坐标;若不存在,请说明理由.考点:二次函数综合题;解二元一次方程;解二元一次方程组;待定系数法求一次函数解析式;二次函数的性质;梯形。专题:计算题。分析:(1)把A、B、O的坐标代入得到方程组,

2、求出方程组的解即可;(2)根据对称轴求出O、B关于对称轴对称,根据勾股定理求出AB即可;(3)①若OB∥AP,根据点A与点P关于直线x=1对称,由A(﹣2,﹣4),得出P的坐标;②若OA∥BP,设直线OA的表达式为y=kx,设直线BP的表达式为y=2x+m,由B(2,0)求出直线BP的表达式为y=2x﹣4,得到方程组,求出方程组的解即可;③若AB∥OP,设直线AB的表达式为y=kx+m,求出直线AB,得到方程组求出方程组的解即可;解答:解:(1)由OB=2,可知B(2,0),将A(﹣2,﹣4),B(2,0),O(

3、0,0)三点坐标代入抛物线y=ax2+bx+c,得解得∴抛物线的函数表达式为.答:抛物线的函数表达式为.(2)解:由,可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段OB的垂直平分线,连接AB交直线x=1于点M,即为所求.∴MO=MB,则MO+MA=MA+MB=AB作AC⊥x轴,垂足为C,则AC=4,BC=4,∴AB=∴MO+MA的最小值为.答:MO+MA的最小值为.(3)解:①若OB∥AP,此时点A与点P关于直线x=1对称,由A(﹣2,﹣4),得P(4,﹣4),则得梯形OAPB.②若OA∥BP,设直线OA

4、的表达式为y=kx,由A(﹣2,﹣4)得,y=2x.设直线BP的表达式为y=2x+m,由B(2,0)得,0=4+m,即m=﹣4,∴直线BP的表达式为y=2x﹣4由,解得x1=﹣4,x2=2(不合题意,舍去)当x=﹣4时,y=﹣12,∴点P(﹣4,﹣12),则得梯形OAPB.③若AB∥OP,设直线AB的表达式为y=kx+m,则,解得,∴AB的表达式为y=x﹣2.∴直线OP的表达式为y=x.由,得x2=0,解得x=0,(不合题意,舍去),此时点P不存在.综上所述,存在两点P(4,﹣4)或P(﹣4,﹣12)使得以点P与

5、点O、A、B为顶点的四边形是梯形.答:在此抛物线上,存在点P,使得以点P与点O、A、B为顶点的四边形是梯形,点P的坐标是(4,﹣4)或(﹣4,﹣12).点评:本题主要考查对梯形,解二元二次方程组,解一元二次方程,二次函数的性质,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用性质进行计算是解此题的关键.2.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标

6、;(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题。专题:综合题。分析:(1)由于抛物线经过A(﹣2,0),B(﹣3,3)及原点O,待定系数法即可求出抛物线的解析式;(2)根据平行四边形的性质,对边平行且相等以及对角线互相平方,可以求出点D的坐标;(3)根据相似三角形对应边的比相等可以求出点P的坐标.解答:解(1)设抛物线的解析式为y=ax2+bx+c(a≠0),且过A(﹣

7、2,0),B(﹣3,3),O(0,0)可得,解得.故抛物线的解析式为y=x2+2x;(2)①当AE为边时,∵A、O、D、E为顶点的四边形是平行四边形,∴DE=AO=2,则D在x轴下方不可能,∴D在x轴上方且DE=2,则D1(1,3),D2(﹣3,3);[来源:学科网ZXXK]②当AO为对角线时,则DE与AO互相平方,因为点E在对称轴上,且线段AO的中点横坐标为﹣1,由对称性知,符合条件的点D只有一个,与点C重合,即C(﹣1,﹣1)故符合条件的点D有三个,分别是D1(1,3),D2(﹣3,3),C(﹣1,﹣1);(

8、3)存在,如上图:∵B(﹣3,3),C(﹣1,﹣1),根据勾股定理得:BO2=18,CO2=2,BC2=20,∴BO2+CO2=BC2.∴△BOC是直角三角形.假设存在点P,使以P,M,A为顶点的三角形与△BOC相似,设P(x,y),由题意知x>0,y>0,且y=x2+2x,①若△AMP∽△BOC,则=,即x+2=3(x2+2x)[来源:Zxxk.Com]得:x1=,x2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。