欢迎来到天天文库
浏览记录
ID:10175214
大小:134.00 KB
页数:3页
时间:2018-06-12
《北师大版七年级数学上册第4章专项训练2线段或角的计数问题(0001)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专训2 线段或角的计数问题名师点金:1.几何计数问题应用广泛,解决方法是“有序数数法”,数数时要做到不重复、不遗漏.2.解决这类问题要用到分类讨论思想及从特殊到一般的思想.3.回顾前面线段、直线的计数公式,比较这些计数公式的区别与联系.线段条数的计数问题1.先阅读文字,再解答问题.(第1题)如图,在一条直线上取两点,可以得到1条线段,在一条直线上取三点可以得到3条线段,其中以A1为端点的向右的线段有2条,以A2为端点的向右的线段有1条,所以共有2+1=3(条).(1)在一条直线上取四个点,以A1为端点的向右的线段有______条,以A2为端点的向右的线段有______条,以A3为
2、端点的向右的线段有______条,共有______+______+______=______(条).[来源:学,科,网Z,X,X,K](2)在一条直线上取五个点,以A1为端点的向右的线段有______条,以A2为端点的向右的线段有________条,以A3为端点的向右的线段有________条,以A4为端点的向右的线段有______条,共有________+________+________+________=______(条).(3)在一条直线上取n个点(n≥2),共有________条线段.(4)乘火车从A站出发,沿途经过5个车站方可到达B站,那么A,B两站之间最多有多少种不
3、同的票价?需要安排多少种不同的车票?(只考虑硬座情况)平面内直线相交所得交点与平面的计数问题[来源:学科网ZXXK]2.为了探究同一平面内的几条直线相交最多能产生多少个交点,能把平面最多分成几部分,我们从最简单的情形入手,如图.(第2题)列表如下:直线条数最多交点个数把平面最多分成部分数102[来源:学科网ZXXK]214337………(1)当直线条数为5时,最多有________个交点,可写成和的形式为________;把平面最多分成______部分,可写成和的形式为________.(2)当直线条数为10时,最多有________个交点,把平面最多分成________部分.(3
4、)当直线条数为n时,最多有多少个交点?把平面最多分成多少部分?[来源:Z+xx+k.Com]关于角的个数的计数问题3.有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,如图,如果过角的顶点A,(1)在角的内部作一条射线,那么图中一共有几个角?(2)在角的内部作两条射线,那么图中一共有几个角?(3)在角的内部作三条射线,那么图中一共有几个角?(4)在角的内部作n条射线,那么图中一共有几个角?(第3题)答案1.解:(1)3;2;1;3;2;1;6 (2)4;3;2;1;4;3;2;1;10 (3)(4)从A站出发,沿途经过5个车站到达B站,类似于一条直线上有7个点,此时
5、共有线段=21(条),即A,B两站之间最多有21种不同的票价.因为来往两站的车票起点与终点不同,所以A,B两站之间需要安排21×2=42(种)不同的车票.2.解:(1)10;1+2+3+4;16;1+1+2+3+4+5 (2)45;56(3)当直线条数为n时,最多有1+2+3+…+(n-1)=个交点;把平面最多分成1+1+2+3+…+n=部分.3.解:(1)如题图①,已知∠BAC,如果在其内部作一条射线,显然这条射线就会和∠BAC的两条边都组成一个角,这样一共就有1+2=3(个)角.(2)题图①中有1+2=3(个)角,如果再在题图①的角的内部增加一条射线,即为题图②,显然这条射线
6、就会和图中的三条射线再组成三个角,即题图②中一共有1+2+3=6(个)角.(3)如题图③,在角的内部作三条射线,即在题图②中再增加一条射线,同样这条射线就会和图中的四条射线再组成四个角,即题图③中一共有1+2+3+4=10(个)角.(4)综上所述,如果在一个角的内部作n条射线,则图中一共有1+2+3+…+n+(n+1)=(个)角.
此文档下载收益归作者所有