欢迎来到天天文库
浏览记录
ID:10152269
大小:250.90 KB
页数:7页
时间:2018-06-11
《高考物理曲线运动和万有引力典型问题剖析2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、曲线运动、万有引力典型问题剖析问题7:会求解在水平面内的圆周运动问题。图12例11、如图12所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。当圆筒的角速度增大以后,下列说法正确的是()A、物体所受弹力增大,摩擦力也增大了B、物体所受弹力增大,摩擦力减小了图13C、物体所受弹力和摩擦力都减小了D、物体所受弹力增大,摩擦力不变分析与解:物体随圆筒一起转动时,受到三个力的作用:重力G、筒壁对它的弹力FN、和筒壁对它的摩擦力F1(如图13所示)。其中G和F1是一对平衡力,筒壁对它的弹力FN提供它做匀速圆周运
2、动的向心力。当圆筒匀速转动时,不管其角速度多大,只要物体随圆筒一起转动而未滑动,则物体所受的(静)摩擦力F1大小等于其重力。而根据向心力公式,,当角速度较大时也较大。故本题应选D。ABCDabcdV0图14例12、如图14所示,在光滑水平桌面ABCD中央固定有一边长为0.4m光滑小方柱abcd。长为L=1m的细线,一端拴在a上,另一端拴住一个质量为m=0.5kg的小球。小球的初始位置在ad连线上a的一侧,把细线拉直,并给小球以V0=2m/s的垂直于细线方向的水平速度使它作圆周运动。由于光滑小方柱abcd的存在,使
3、线逐步缠在abcd上。若细线能承受的最大张力为7N(即绳所受的拉力大于或等于7N时绳立即断开),那么从开始运动到细线断裂应经过多长时间?小球从桌面的哪一边飞离桌面?分析与解:当绳长为L0时,绳将断裂。据向心力公式得:T0=mV02/L0所以L0=0.29m绕a点转1/4周的时间t1=0.785S;绕b点转1/4周的时间t2=0.471S;绳接触c点后,小球做圆周运动的半径为r=0.2m,小于L0=0.29m,所以绳立即断裂。所以从开始运动到绳断裂经过t=1.256S,小球从桌面的AD边飞离桌面问题8:会求解在竖直
4、平面内的圆周运动问题。物体在竖直面上做圆周运动,过最高点时的速度,常称为临界速度,其物理意义在不同过程中是不同的.在竖直平面内做圆周运动的物体,按运动轨道的类型,可分为无支撑(如球与绳连结,沿内轨道的“过山车”)和有支撑(如球与杆连接,车过拱桥)两种.前者因无支撑,在最高点物体受到的重力和弹力的方向都向下.当弹力为零时,物体的向心力最小,仅由重力提供,由牛顿定律知mg=,得临界速度.当物体运动速度V5、在最高点速度可为零,不存在“掉下”的情况.物体除受向下的重力外,还受相关弹力作用,其方向可向下,也可向上.当物体实际运动速度产生离心运动,要维持物体做圆周运动,弹力应向下.当物体有向心运动倾向,物体受弹力向上.所以对有约束的问题,临界速度的意义揭示了物体所受弹力的方向.对于无约束的情景,如车过拱桥,当时,有N=0,车将脱离轨道.此时临界速度的意义是物体在竖直面上做圆周运动的最大速度.注意:如果小球带电,且空间存在电场或磁场时,临界条件应是小球所受重力、电场力和洛仑兹力的合力等于向心力,此时临界速度。要具体问题具体6、分析,但分析方法是相同的。例13、小球A用不可伸长的细绳悬于O点,在O点的正下方有一固定的钉子B,OB=d,初始时小球A与O同水平面无初速度释放,绳长为L,为使小球能绕B点做完整的圆周运动,如图15所示。试求d的取值范围。DdLOmBCA图15分析与解:为使小球能绕B点做完整的圆周运动,则小球在D对绳的拉力F1应该大于或等于零,即有:根据机械能守恒定律可得由以上两式可求得:图16V0R例14、如图16所示,游乐列车由许多节车厢组成。列车全长为L,圆形轨道半径为R,(R远大于一节车厢的高度h和长度l,但L>2πR)7、.已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动而不能脱轨。试问:列车在水平轨道上应具有多大初速度V0,才能使列车通过圆形轨道?分析与解:列车开上圆轨道时速度开始减慢,当整个圆轨道上都挤满了一节节车厢时,列车速度达到最小值V,此最小速度一直保持到最后一节车厢进入圆轨道,然后列车开始加速。由于轨道光滑,列车机械能守恒,设单位长列车的质量为λ,则有:要使列车能通过圆形轨道,则必有V>0,解得。问题9:会讨论重力加速度g随离地面高度h的变化情况。例15、设地球表面的重力加速度为g,物体在距地心4R(R是地球8、半径)处,由于地球的引力作用而产生的重力加速度g,,则g/g,为A、1;B、1/9;C、1/4;D、1/16。分析与解:因为g=G,g,=G,所以g/g,=1/16,即D选项正确。问题10:会用万有引力定律求天体的质量。通过观天体卫星运动的周期T和轨道半径r或天体表面的重力加速度g和天体的半径R,就可以求出天体的质量M。例16、已知地球绕太阳公转的轨道半径r=1.4910
5、在最高点速度可为零,不存在“掉下”的情况.物体除受向下的重力外,还受相关弹力作用,其方向可向下,也可向上.当物体实际运动速度产生离心运动,要维持物体做圆周运动,弹力应向下.当物体有向心运动倾向,物体受弹力向上.所以对有约束的问题,临界速度的意义揭示了物体所受弹力的方向.对于无约束的情景,如车过拱桥,当时,有N=0,车将脱离轨道.此时临界速度的意义是物体在竖直面上做圆周运动的最大速度.注意:如果小球带电,且空间存在电场或磁场时,临界条件应是小球所受重力、电场力和洛仑兹力的合力等于向心力,此时临界速度。要具体问题具体
6、分析,但分析方法是相同的。例13、小球A用不可伸长的细绳悬于O点,在O点的正下方有一固定的钉子B,OB=d,初始时小球A与O同水平面无初速度释放,绳长为L,为使小球能绕B点做完整的圆周运动,如图15所示。试求d的取值范围。DdLOmBCA图15分析与解:为使小球能绕B点做完整的圆周运动,则小球在D对绳的拉力F1应该大于或等于零,即有:根据机械能守恒定律可得由以上两式可求得:图16V0R例14、如图16所示,游乐列车由许多节车厢组成。列车全长为L,圆形轨道半径为R,(R远大于一节车厢的高度h和长度l,但L>2πR)
7、.已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动而不能脱轨。试问:列车在水平轨道上应具有多大初速度V0,才能使列车通过圆形轨道?分析与解:列车开上圆轨道时速度开始减慢,当整个圆轨道上都挤满了一节节车厢时,列车速度达到最小值V,此最小速度一直保持到最后一节车厢进入圆轨道,然后列车开始加速。由于轨道光滑,列车机械能守恒,设单位长列车的质量为λ,则有:要使列车能通过圆形轨道,则必有V>0,解得。问题9:会讨论重力加速度g随离地面高度h的变化情况。例15、设地球表面的重力加速度为g,物体在距地心4R(R是地球
8、半径)处,由于地球的引力作用而产生的重力加速度g,,则g/g,为A、1;B、1/9;C、1/4;D、1/16。分析与解:因为g=G,g,=G,所以g/g,=1/16,即D选项正确。问题10:会用万有引力定律求天体的质量。通过观天体卫星运动的周期T和轨道半径r或天体表面的重力加速度g和天体的半径R,就可以求出天体的质量M。例16、已知地球绕太阳公转的轨道半径r=1.4910
此文档下载收益归作者所有