重庆市主城八区高三第二次调研抽测试题(数学理)缺答案

重庆市主城八区高三第二次调研抽测试题(数学理)缺答案

ID:10046530

大小:269.84 KB

页数:4页

时间:2018-05-22

重庆市主城八区高三第二次调研抽测试题(数学理)缺答案_第1页
重庆市主城八区高三第二次调研抽测试题(数学理)缺答案_第2页
重庆市主城八区高三第二次调研抽测试题(数学理)缺答案_第3页
重庆市主城八区高三第二次调研抽测试题(数学理)缺答案_第4页
资源描述:

《重庆市主城八区高三第二次调研抽测试题(数学理)缺答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、重庆市主城八区高三第二次调研抽测试题(数学理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间1.第I卷(选择题,共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在机读卡上.2.每小题选出答案后,用2B铅笔把机读卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.考试结束,监考人将本试题和机读卡一并收回.一、选择题:本大题10个小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设全集U=R,集合,,则集合A=()A.B.C.D.2.已知,则函数的最小值

2、为(   )A.B.C.D.3.要得到函数的图象,只需将函数的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位4.已知直线与圆相切,则直线的倾斜角为()A.B.C.D.5.若实数满足且的最小值为4,则实数的值为()A.0B.2C.D.36.是定义在R上的以4为周期的偶函数,若,,则的取值范围是(   )A.B.C.D.7.在广州亚运会上,中国女排奋力拼搏,最后获得冠军.中国女排是由四个强队中选出的18人组成,其队员人数具体来源如下表:队别北京上海天津八一人数4635现从这18名队员中随机选出两名代表发言,则这两人是来自于不同强队的概率为()A.B.C.D.

3、8.在半径为1的球内有一内接正四棱柱,正四棱柱的高为,一个动点从正四棱柱的一个顶点出发沿球面运动到达另一个顶点,则经过的最短路程是()A.B.C.D.9.已知抛物线与双曲线有相同的焦点,点是两曲线的交点且到抛物线准线的距离为,则双曲线的离心率为()A.B. C.D.10.给定两个长度均为2的平面向量和,它们的夹角为150°.点在以为圆心的圆弧上运动,如图所示.若,其中,则的最大值是()A.2 B. C.2 D.4第Ⅱ卷(非选择题,共100分)二、填空题:本大题5个小题,每小题5分,共25分,把答案填写在答题卡Ⅱ相应位置上.11.若复数为纯虚数,则实数的值为________________

4、__.12.已知数列,满足,则=__________________.13.已知为二项式展开式中二项式系数之和,且,则.14.古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,则排列中属性相克的两种物质不相邻的排列种数是(用数字作答).15.已知函数,关于的方程恰有8个不同的实根,则实数k的取值范围是.三、解答题:本大题6个小题,共75分,解答应写出必要的文字说明、演算步骤或推理过程,并答在答题卡Ⅱ相应位置上.16.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)已知函数.(Ⅰ)求函数的最小正周期和单

5、调递减区间;(Ⅱ)若,是否存在实数,使函数的值域恰为?若存在,请求出的取值;若不存在,请说明理由.17.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)3月11日日本发生9.0级地震后,某国派遣了由9名医护人员和27名搜救人员组成的救援队到日本救援,谁知日本福岛核电站连续爆炸,使该救援队的医护人员和的搜救人员遭轻微核辐射.(Ⅰ)在该救援队中随机抽查3名救援队员,求恰有1名遭轻微核辐射的医护人员且至多1名遭轻微核辐射的搜救人员的概率;(Ⅱ)在该救援队中随机抽查3名医护人员,设其中遭轻微核辐射的人数为随机变量,求的分布列及数学期望.ABB1C1A1C18.(本小题满分13分,(Ⅰ)小问6

6、分,(Ⅱ)小问7分)如图所示,在直三棱柱ABC—A1B1C1中,. (Ⅰ)求点A1到平面AB1C1的距离; (Ⅱ)求二面角B—AB1—C1的余弦值.19.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)已知焦点在轴上的椭圆的左右焦点分别为、,椭圆的一个顶点恰好是抛物线的焦点,点是椭圆上一动点且△的面积最大值为2.(Ⅰ)求椭圆方程;(Ⅱ)过椭圆的右焦点作与坐标轴不垂直的直线交椭圆于两点,点是轴上不同于原点的一个动点,求满足条件的实数的取值范围.本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问4分,(Ⅲ)4分)设函数,其中为常数.(Ⅰ)若函数在定义域上单调递增,求的取值范围;(Ⅱ)若0,求函

7、数的极值点;(Ⅲ)当时,利用函数的性质证明:对任意大于1的正整数,不等式恒成立.21.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)已知非零向量列满足:.(Ⅰ)证明:是等比数列;(Ⅱ)设,,求证:.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。