欢迎来到天天文库
浏览记录
ID:9393713
大小:176.50 KB
页数:11页
时间:2018-04-30
《高三数学等比数列前n项和3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《等比数列的前n项和》教学案例设计一、设计思想1、设计理念本课的教学设计基于“人人都能获得必要得数学”即平等性的考虑,坚持面向全体学生,努力设计“适合学生发展得数学教育”,体现“人人学数学”,“不同的人学不同的数学”的理念。教学中强调“培养学生情感、态度与价值观”的重要性,注重引导学生主动地进行探索,从而帮助学生树立正确的数学观,但又与教师的设计问题与活动的引导密切结合,强调“活动”的内化,即在头脑中实现必要的重构或认知结构的重组,从而引起真正的数学思维,提高思维的效益。通过联系学生的生活实际使其真正感到数学是
2、有意义的,一方面培养学生的社会意识,明确肯定“日常数学”的合理性等,另一方面,再调动学生生活经验的同时,又应努力帮助他们清楚地去熟悉生活经验并上升到“学校数学”的必要性。2、设计背景传统的数学作业单调枯燥,脱离生活和学生实际,不利于学生个性和能力的发展。在新课程标准的理念下,重新认识作业的意义和价值,突破传统,改变现状,树立正确的作业观,创新作业方式,激发兴趣,发展学生数学素质,既注重基础知识的巩固,更要注重学生思维和能力的发展,既要创新又要保证其科学有效,使学生在做作业的过程中体验快乐、形成能力、学会合作、体
3、验自主。3、教材的地位与作用本节教材在学生学习过等比数列的概念与性质的基础上,学习等比数列n前项和公式,能用等比数列的前n项和公式解决相关求和问题。探索公式的推导、体会错位相减法以及分类讨论的思想方法。本节内容基础知识和基本技能非常重要,涉及的数学思想、方法较为丰富,因此是重点内容之一。本设计是第一课时的教学内容。二、学习目标⑴知识与技能掌握等比数列的前n项和公式,能用等比数列的前n项和公式解决相关问题。⑵过程与方法通过等比数列的前n项和公式的推导过程,体会错位相减法以及分类讨论的思想方法。⑶情感、态度与价值观
4、通过对等比数列的学习,发展数学应用意识,逐步认识数学的科学价值、应用价值,发展数学的理性思维。教学重点掌握等比数列的前n项和公式,能用等比数列的前n项和公式解决相关问题。教学难点错位相减法以及分类讨论的思想方法的掌握。三、教学设想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识
5、应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下:四、教学过程(一)创设问题情景课前给出复习:等比数列的定义及性质课首给出引例:“一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,以后每天所借的钱数都比上一天多1万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠.穷人听后觉得挺划算,本想定下来
6、,但又想到此富人是吝啬出了名的,怕上当受骗,所以很为难。”请在座的同学思考讨论一下,穷人能否向富人借钱?[设计一个学生比较感爱好的实际问题,吸引学生注重力,使其马上进入到研究者的角色中来!](二)启发引导学生数学地观察问题,构建数学模型。学生直觉认为穷人可以向富人借钱,教师引导学生自主探求,得出:穷人30天借到的钱:(万元)穷人需要还的钱:?[直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!]教师紧接着把如何求?的问题让学生探究,①若用公比2乘以上面等式的两边,得到②若②式减去①式,可以消去相同的项,得到:
7、(分)≈1073(万元)>465(万元)答案:穷人不能向富人借钱(三)引导学生用“特例到一般”的研究方法,猜想数学规律。提出问题:如何推导等比数列前n项和公式?(学生很自然地模仿以上方法推导)(1)-(2)有推导等比数列前n项和的公式,教师引导讲完课本上的推导方法后,教师:还有没有其他推导方法?(经过几分钟的思考,有学生举手发言)学生A:即。学生B:[“特例→类比→猜想”是一种常用的科学的研究思路!教师让学生进行各种尝试,探寻公式的推导的方法,同时抓住机会或创设问题情景调动了学生参与问题讨论的积极性,培养学生的
8、探究能力,发挥了组织者、推进者和指导者的作用,而学生却是实实在在的主体活动者、成为发现者、创造者!让学生享受成功的喜悦!]【基础知识形成性练习:】1、求下列等比数列的各项和:(1)1,3,9,…,2187(2)2、根据下列条件求等比数列的前n项和①②(四)数学应用例1求等比数列1/2,1/4,1/8……的(1)前8项的和;(2)第四项到第八项的和解:(1)(2)例2:在等比数列中,(1
此文档下载收益归作者所有