正文描述:《高三数学数列试卷》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、《数列》练习试题班级_________姓名__________一、选择题1设为等比数列的前项和,,则()(A)11(B)5(C)(D)2设为等比数列的前项和,已知,,则公比(A)3(B)4(C)5(D)6()3设{an}是有正数组成的等比数列,为其前n项和。已知a2a4=1,,则(A)(B)(C)(D)()4、)等比数列中,,=4,函数,则()A.B.C.D.5在等比数列中,,公比.若,则m=(A)9(B)10(C)11(D)126、已知为等比数列,Sn是它的前n项和。若,且与2的等差中项为,则=()A.35B.33C.31D.297已知各项
2、均为正数的等比数列{}中,=5,=10,则=(A)(B)7(C)6(D)8设等差数列的前n项和为,若,,则当取最小值时,n等于()A.6B.7C.8D.9二、填空题9设为等差数列的前项和,若,则。10函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=_________11、如果等差数列中,,那么______12、设数列的前n项和,则的值为_________13、在等比数列中,,则公比q的值为__________14、设等比数列的公比,前项和为,则.15.设是公比为
3、的等比数列,,令,若数列有连续四项在集合中,则=.三、解答题:16已知是公差不为零的等差数列,成等比数列.求数列的通项;求数列的前n项和17已知等差数列满足:,,的前n项和为.(Ⅰ)求及;(Ⅱ)令bn=(nN*),求数列的前n项和.18、已知数列的前项和为,且,(1)证明:是等比数列;(2)求数列的通项公式,并求出使得成立的最小正整数.19、已知等差数列的公差d不为0,设(Ⅰ)若,求数列的通项公式;(Ⅱ)若成等比数列,求q的值。(Ⅲ)若内部资料仅供参考9JWKffwvG#tYM*Jg&6a*CZ7H$dq8KqqfHVZFedswSyXTy#
4、&QA9wkxFyeQ^!djs#XuyUP2kNXpRWXmA&UE9aQ@Gn8xp$R#͑Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&MuWFA5uxY7JnD6YWRrWwc^vR9CpbK!zn%Mz849Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&MuWF
5、A5ux^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&MuWFA5uxY7JnD6YWRrWwc^vR9CpbK!zn%Mz849Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmUE9aQ@Gn8xp$R#͑Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4
6、NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&MuWFA5uxY7JnD6YWRrWwc^vR9CpbK!zn%Mz849Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&MuWFA5ux^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&MuWFA5uxY
7、7JnD6YWRrWwc^vR9CpbK!zn%Mz849Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z8vG#tYM*Jg&6a*CZ7H$dq8KqqfHVZFedswSyXTy#&QA9wkxFyeQ^!djs#XuyUP2kNXpRWXmA&UE9aQ@Gn8xp$R#͑Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpaz
8、adNu##KN&MuWFA5uxY7JnD6YWRrWwc^vR9CpbK!zn%Mz849Gx^G89AmUE9aQ@Gn8xp$R#͑Gx^Gjqv^
显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。