【人教a版】2017版必修一:第3章《函数的应用》导学案设计(含答案)

【人教a版】2017版必修一:第3章《函数的应用》导学案设计(含答案)

ID:8682054

大小:371.88 KB

页数:10页

时间:2018-04-04

【人教a版】2017版必修一:第3章《函数的应用》导学案设计(含答案)_第1页
【人教a版】2017版必修一:第3章《函数的应用》导学案设计(含答案)_第2页
【人教a版】2017版必修一:第3章《函数的应用》导学案设计(含答案)_第3页
【人教a版】2017版必修一:第3章《函数的应用》导学案设计(含答案)_第4页
【人教a版】2017版必修一:第3章《函数的应用》导学案设计(含答案)_第5页
资源描述:

《【人教a版】2017版必修一:第3章《函数的应用》导学案设计(含答案)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.1.1 方程的根与函数的零点[学习目标] 1.理解函数零点的定义,会求函数的零点.2.掌握函数零点的判定方法.3.了解函数的零点与方程的根的联系.知识点一 函数的零点对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.思考 函数的零点是点吗?答 函数y=f(x)的图象与横轴的交点的横坐标称为这个函数的零点,因此函数的零点不是点,是方程f(x)=0的解,即函数的零点是一个实数.知识点二 函数的零点、方程的根、函数图象之间的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔

2、函数y=f(x)有零点.知识点三 函数零点的判定定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0.那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.思考 (1)若函数f(x)在(a,b)内有零点,则f(a)·f(b)<0一定成立吗?(2)若函数f(x)在[a,b]上有f(a)·f(b)>0,则f(x)在(a,b)上一定没有零点吗?答 (1)不一定.可能y=f(x)在x=a或y=b处无定义;即使有

3、定义,也可能f(a)·f(b)>0.如函数y=(x-1)2在(0,2)内有零点,但f(0)·f(2)>0.(2)不一定,如y=(x-1)2,在[0,2]上f(0)·f(2)>0,但f(x)在(0,2)上有零点1.题型一 求函数的零点例1 判断下列函数是否存在零点,如果存在,请求出.(1)f(x)=x2+7x+6;(2)f(x)=1-log2(x+3);(3)f(x)=2x-1-3;(4)f(x)=.解 (1)解方程f(x)=x2+7x+6=0,得x=-1或x=-6,所以函数的零点是-1,-6.(2)解方程f(x)=

4、1-log2(x+3)=0,得x=-1,所以函数的零点是-1.(3)解方程f(x)=2x-1-3=0,得x=log26,所以函数的零点是log26.(4)解方程f(x)==0,得x=-6,所以函数的零点为-6.反思与感悟 求函数零点的两种方法:(1)代数法:求方程f(x)=0的实数根;(2)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.跟踪训练1 函数y=x-1的零点是(  )A.(1,0)B.0C.1D.不存在答案 C解析 令y=x-1=0,得x=1,故函数

5、y=x-1的零点为1.题型二 判断函数零点所在区间例2 已知函数f(x)=x3-x-1仅有一个正零点,则此零点所在的区间是(  )A.(3,4)B.(2,3)C.(1,2)D.(0,1)答案 C解析 ∵f(0)=-1<0,f(1)=-1<0,f(2)=5>0,f(3)=23>0,f(4)=59>0.∴f(1)·f(2)<0,此零点一定在(1,2)内.反思与感悟 1.判断零点所在区间有两种方法:一是利用零点存在定理,二是利用函数图象.2.要正确理解和运用函数零点的性质在函数零点所在区间的判断中的应用,若f(x)图象在

6、[a,b]上连续,且f(a)·f(b)<0,则f(x)在(a,b)上必有零点,若f(a)·f(b)>0,则f(x)在(a,b)上不一定没有零点.跟踪训练2 函数f(x)=ex+x-2的零点所在的一个区间是(  )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)答案 C解析 ∵f(0)=e0+0-2=-1<0,f(1)=e1+1-2=e-1>0,∴f(0)·f(1)<0,∴f(x)在(0,1)内有零点.题型三 判断函数零点的个数例3 判断函数f(x)=lnx+x2-3的零点的个数.解 方法一 函数对应的

7、方程为lnx+x2-3=0,所以原函数零点的个数即为函数y=lnx与y=3-x2的图象交点个数.在同一直角坐标系下,作出两函数的图象(如图).由图象知,函数y=3-x2与y=lnx的图象只有一个交点.从而方程lnx+x2-3=0有一个根,即函数y=lnx+x2-3有一个零点.方法二 由于f(1)=ln1+12-3=-2<0,f(2)=ln2+22-3=ln2+1>0,所以f(1)·f(2)<0,又f(x)=lnx+x2-3的图象在(1,2)上是不间断的,所以f(x)在(1,2)上必有零点,又f(x)在(0,+∞)上

8、是递增的,所以零点只有一个.反思与感悟 判断函数零点个数的方法:(1)对于一般函数的零点个数的判断问题,可以先确定零点存在,然后借助于函数的单调性判断零点的个数;(2)由f(x)=g(x)-h(x)=0,得g(x)=h(x),在同一直角坐标系下作出y1=g(x)和y2=h(x)的图象,利用图象判定方程根的个数;(3)解方程,解得方程根的个数即为函数零点的个数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。