正文描述:《2013秋新人教版数学八上12.3《角的平分线的性质》(第2课时)word学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:12.3角的平分线的性质(第二课时)学习内容:教材P21,通过独立思考和小组合作,能够证明几何命题。学习目标:1、进一步熟练角平分线的画法,证明几何命题的步骤2、进一步理解角平分线的性质及运用学习重点:角平分线的性质及运用学习难点:角平分线的性质的灵活运用学习方法:探究、交流、练习学习过程:一、课前巩固1、画出三角形三个内角的平分线你发现了什么特点吗?2、如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等二、学习新知(一)思考:教材P21证明一个几何命题
2、的一般步骤:①;②;③。(二)应用:1、求证:到角的两边的距离相等的点在角的平分线上2、如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?(1).集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?(2.比例尺为1:20000是什么意思?三、基础练习1.到角的两边距离相等的点在上。2.到三角形三边的距离相等的点是三角形()A.三条边上的高线的交点;B.三个内角平分线
3、的交点;C.三条边上的中线的交点;D.以上结论都不对。3.在△ABC中,∠C=90°,AD平分∠BAC,BC=8cm,BD=5cm,则D到AB的距离是。4.已知:AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,求证:∠BAO=∠CAO四、拓展延伸已知:BD⊥AM于点D,CE⊥AN于点E,BD,CE交点F,CF=BF,求证:点F在∠A的平分线上.AAAAAAADNEBFMCA五、课堂小结六、当堂检测1、图中的直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距
4、离相等,则可供选择的地址有:()A.一处B.两处C.三处D.四处2.如图,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF,求证:DF=EFA3.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,且BE=CF。求证:AD是△ABC的角平分线。FECDB七、课后反思:
显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。