高等代数的研究毕业论文

高等代数的研究毕业论文

ID:847668

大小:31.00 KB

页数:5页

时间:2017-09-19

高等代数的研究毕业论文_第1页
高等代数的研究毕业论文_第2页
高等代数的研究毕业论文_第3页
高等代数的研究毕业论文_第4页
高等代数的研究毕业论文_第5页
资源描述:

《高等代数的研究毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、5新闻整体真实操作论高等代数的研究毕业论文I、心得体会高数下册比上册的难度、计算量都要大。比如三重积分,计算时,不仅需要知道基本的公式,然后根据表达式选择合适的坐标系;还要注意灵活变换,例如对于二重积分注意有时需要把X-型区域换成Y-型区域来计算;总之算好一道题需要基础+技巧+细心+耐心!而且有好多三维空间立体的图形,需要对各种常见的表达式的图形非常熟悉,以及很好的空间思维能力,而且画好立体图形是做好题的前提!以及多重积分、级数等都是比较难以理解的知识点。因此本课程学习起来也我感觉比较吃力。II、对本课程主要知识点和知识体系进行下总结。⒈向量代数与空间解析几何55新闻整体真实操作

2、论向量是一种重要的数学工具,中学阶段也学了不少向量的知识,在本课程里,我们进一步学习了向量的方向余弦、向量积、混合积等概念;然后介绍了空间曲面的概念以及常见的集中空间曲面,例如旋转曲面、柱面、二次曲面;这些只是与后面的多元函数的几何应用有着很大的联系!而且对后面的曲面积分的计算有着很大的帮助!因此掌握常见的曲面的表达式以及其图形的画法十分重要!空间解析几何是用代数的方法研究空间图形的性质。本章主要把中学的二维曲线推广到空间三维坐标中间去,介绍了空间曲线的方程,接着以向量为工具,研究了空间与直线之间的一些关系。2.多元函数的微分学首先先学习了一些多元函数的基本概念和极限的概念多元函

3、数的基本概念(函数的极限、连续性、有界性与最大值最小值定理、介值定理),然后讨论了多元函数的微分方法极其应用,微分的方法,先介绍了偏倒数以及其几何意义(偏导数的概念,二阶偏导数的求解),再把其由二元推广到空间,其中有许多类似的,可以类似学习!其次介绍了全微分研究微分的方法,还有隐函数的微分法。接着联系到几何应用,由空间曲线的切线与法平面,接着推广到曲面的切平面与法线。接着学习了多元函数的极值极其求法,其与二元函数的定义与求法十分相似,其中不同的是,有个判别多元函数是否存在极值的方法:AC-B2与0的关系来判断的;然后在满足一定条件问题的极值,用到了拉格朗日成数法;然后学习了用最小

4、而成法线性拟合问题。3.重积分55新闻整体真实操作论本章的行文思路大都是以一个实际问题引出,然后对实际对象进行分割、近似、求和、取极限,然后引出定义,接着介绍其性质,二重积分与三重积分性质这方面都很类似!可以类似学习!对于计算,二重积分计算方法主要有选择X/Y-型区域跟上下限,然后计算二次积分,对同一个区域,X/Y型区域的选择很重要注意灵活选择;也可以转换成极坐标下的计算,关键是与r的上下限的求取。对于三重积分,首先是先根据表达式、图形选择坐标系,然后把各个变量的上下限确定好,接着就一步步的细心的计算吧!然后第四节注意讲的是应用,几何上的应用有计算面积,体积;物理上的应用有质心以

5、及转动惯量的计算。这一点与大学物理的知识有一定的联系!4.曲线积分与曲面积分先学习了对弧长的曲线积分和对坐标的曲面积分,然后介绍两者之间的关系;中间介绍了格林公式;然后介绍对面积的曲面积分和对坐标的曲面积分;接着介绍高斯公式,其表达的是空间区域的三重积分与其边界曲面上的曲面积分之间的关系,它是格林公式的推广!斯托克斯公式介绍了曲面E上的曲面积分与沿着E的边界曲面L的曲线积分之间的联系!本章计算量大,需要极其的细心和耐心!III、对自己的能力的培养55新闻整体真实操作论学习本章、做本章的习题可以锻炼我们克服困难的心理和能力!这些素质对我们学习计算机的学生来说是非常重要的!因为在计算

6、机编程的过程中,总是充满枯燥与困难,所以,现在经理一些困难是对我们很有帮助的!5.无穷级数最后一章学习了。首先学习了常数项级数,介绍了其定义、性质以及敛散性的判别方法,其中重点掌握几何级数和调和级数的敛散性,这是后面比较判别法的比较的对象。正项级数是一类特殊的常数项级数,其中还学习了比较判别法、比值判别发与根植判别法。然后介绍了一类重要的级数类型:交错级数。有个莱布尼兹判别法来判断其收敛性。还有一个重要级数类型:幂级数。主要介绍了幂级数的收敛半径的求法以及幂级数的四则运算。后面介绍了函数展开成幂级数的方法,主要是间接展开法,其要点是要记住那几个常见的函数展开方法。最后介绍了傅立叶

7、级数,,主要介绍了其展开的方法!IV、总结通过对高数的学习,锻炼了我的逻辑思维和空间想象能力以及思维的缜密严谨性,同时锻炼了我的耐性以及浮躁的心里。我相信对我以后的生活学习都会有很大的帮助!V、感谢语感谢赵老师对我们的教诲!您辛苦了!祝老师工作顺利!天天开❤!(*^__^*)55新闻整体真实操作论5

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。