欢迎来到天天文库
浏览记录
ID:83504704
大小:332.83 KB
页数:5页
时间:2023-06-30
《重庆市第十一中学校2022-2023学年高二下学期期中数学 Word版无答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
重庆十一中2022-2023学年高二下期期中考试数学试题一、单项选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一项是符合题意的.1.计算的值是()A.252B.70C.56D.212.已知奇函数满足,则=()A.B.C.1D.−13.如图是函数的导函数的图象,则下列说法正确的是()A.是函数的极小值点B.当或时,函数的值为0C.函数在上是增函数D.函数在上是增函数4.若,则()A.27B.-27C.54D.-545.已知直线:过定点,则点到直线:距离的最大值是()A.1B.2C.D.6.已知函数,则正确是().A.的极大值2B.有三个零点C.点是曲线的对称中心D.直线是曲线的切线
17.公元五世纪,数学家祖冲之估计圆周率的范围是:,为纪念祖冲之在圆周率方面的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某教师为帮助同学们了解“祖率”,让同学们把小数点后的7位数字1,4,1,5,9,2,6进行随机排列,整数部分3不变,那么可以得到大于3.14的不同数字的个数为()A.720B.1440C.2280D.40808.已知函数是定义在上的可导函数,,且,则不等式的解集为A.B.C.D.二、多项选择题:本大题共4小题,每小题5分,共计20分.每小题给出的四个选项中,有多个选项符合题意.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列求导运算正确的是()AB.C.D.10.我校111周年校庆将于2023年5.20进行,为了宣传需要,现在对我校3男3女共6名学生排队照相,则下列说法正确的是()A.6名学生排成两排,女生在第一排,男生在第二排,一共有720种不同排法B.6名学生排成一排,男生甲只能排在队伍的两端的共有120种排法C.6名学生排成一排,男生甲、乙相邻的排法总数为240种D.6名学生排成一排,男女生相间的排法总数为72种11.2022年卡塔尔世界杯会徽正视图近似伯努利双纽线.伯努利双纽线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.定义在平面直角坐标系中,把到定点,距离之积等于的点的轨迹称为双纽线,已知点是时的双纽线上一点,下列说法正确的是()
2A.双纽线是中心对称图形B.C.双纽线上满足的点有2个D.的最大值为12.已知直线与曲线相交于A,B两点,与曲线相交于B,C两点,A,B,C的横坐标分别为,则()A.B.C.D.构成等比数列三、填空题:本大题共4小题,每小题5分,共20分.13.的展开式中的系数是_____14.已知一个底面半径为的圆锥,其侧面展开图为半圆,则该圆锥的体积为_____.15.已知函数,对于任意不同的,,有,则实数a的取值范围为______.16.杨辉是我国南宋伟大的数学家,“杨辉三角”是他的伟大成就之一.如果将杨辉三角从第一行开始的每一个数都换成,得到的三角形称为“莱布尼茨三角形”,莱布尼茨由它得到很多定理,甚至影响到微积分的创立,则“莱布尼茨三角形”第2023行中最小的数是____________________(结果用组合数表示)
3四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.17.已知的展开式中第9项、第10项、第11项的二项式系数成等差数列.(1)求n的值;(2)求展开式中x的系数.18.设(),曲线在点处的切线与轴相交于点.(1)求的值;(2)函数在(0,4]上的最大值.19.已知函数,.(1)若是函数的极值点,求的值;(2)若函数在上仅有个零点,求的取值范围.20.吴老师发现《九章算术》有“刍甍”这个五面体,于是她仿照该模型设计了一个学探究题,如图:E,F,G分别是正方形的三边AB、CD、AD的中点,先沿着虚线段FG将等腰直角三角形FDG裁掉,再将剩下的五边形ABCFG沿着线段EF折起,连接AB、CG就得到一个“刍甍”.(1)若是四边形对角线的交点,求证:∥平面;(2)若二面角的大小为,求直线与平面所成角的正弦值.
421.已知椭圆左,右焦点分别为,上顶点为,且为等边三角形.经过焦点的直线与椭圆相交于两点,的周长为.(1)求椭圆方程;(2)试探究:在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.22.已知函数.(1)讨论函数的导数的单调性;
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处