电大《工程数学》期末考试答案期末考试复习小抄

电大《工程数学》期末考试答案期末考试复习小抄

ID:83466461

大小:4.98 MB

页数:35页

时间:2023-06-28

上传者:灯火阑珊2019
电大《工程数学》期末考试答案期末考试复习小抄_第1页
电大《工程数学》期末考试答案期末考试复习小抄_第2页
电大《工程数学》期末考试答案期末考试复习小抄_第3页
电大《工程数学》期末考试答案期末考试复习小抄_第4页
电大《工程数学》期末考试答案期末考试复习小抄_第5页
电大《工程数学》期末考试答案期末考试复习小抄_第6页
电大《工程数学》期末考试答案期末考试复习小抄_第7页
电大《工程数学》期末考试答案期末考试复习小抄_第8页
电大《工程数学》期末考试答案期末考试复习小抄_第9页
电大《工程数学》期末考试答案期末考试复习小抄_第10页
资源描述:

《电大《工程数学》期末考试答案期末考试复习小抄》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1.48”▤▣ᑣᑡ⚪ḄA.&_|AB|=5.,X2…X”ᩭ᝱2஻,Ḅ᪵ᑣC஻.£11.A!3*,"▣"!"2"▣$C!B"▣%&'ᓄ"ᨵ*+.X418.-ឋ/0AX=஻ᨵ234ᑣ56Ḅ78/0AX=oA.A.ᨵ019.A.B!9:;<ᑡ=>ᡂ@ḄD,HA-B=H&-1,48!C▤D⌮"▣Fᜧ0,ᑣ>Bᡂ@.H3.A.B!஻▤"▣ᑣᑡ=>ᡂ@ḄC.C^A+B'=A'+B'1.A,Bᙳ!஻▤D⌮"▣ᑣᑡ=>ᡂ@Ḅ.Jᔣ8[=L-4.A"ᙳ!”▤D⌮"▣ᑣᑡMNᐵPḄB=|RT5.T0ᙳ!“▤▣V஺FV|,ᑣᑡ=>ḄD.X|3ᑗ=3᝕"|[9.A,B!”▤"▣/]A^BḄᱯ`a*]A^BḄcd2Ḅᱯ`ᔣeᑣfgᡂ@.D.▲A+BḄ2Ḅᱯᔣ10.A,B,P!”▤"▣h=>Cᡂ@ᑣiAjB5k.C.PAP'B3.A=[5],lmnḄᱯ`aDD.-4,6[513."▣7]Ḅᱯ`a!0,2,ᑣ34Ḅᱯ`a!.B.0,64.n8q;<ᐸ/,86./mX஻"▣Bsx/"▣F,C8ᨵ*+ᑣC"x஻_"▣.7."▣ᑣnḄr6dᱯ`aTḄ3sᱯ`ᔣe”=C.1,1,011.%1123ᩭ᝱.஻1/Ḅ᪵ᑣ஻Ḅ.τ31-x,+-x,-.+b

110.u஽,…,ᩭ᝱Ḅ᪵x!IBze.B.9.A.B.Cᙳ!஻▤D⌮"▣ᑣ4CBT=D.{জ஺/10.A,B,Cᙳ!”▤D⌮"▣ᑣᑡ=>ᡂ@ḄA_A+32=[+2.+6.9:~e~8஻஺F=4.8,£=.96,ᑣᦪ஻ᑖT.A.6,0.8;7./!9:~eXḄᦪᑣr*Ḅa,ha(X)=/,$(C)%ᨵE(y)=0,£>(r)=1.dy_X-"1•1,,,…&ᩭ᝱N஻4ᙳ¡Ḅ᪵ᑣAze.¢@2.£¤ᩭ᝱N",/஻,Tᙳ¡Ḅ᪵ᑣzeD¥஻Ḅ¦1!ag2(D).D.-66஺201b?b32(»|-3bl2%-2tiy-3by2.hx1|a=(A).A.1/21.h§τᑣ=A.^3.6.hAri"▣ᑣ=>Bᡂ@.=A8.hAᡂ@ᑣ஻ᐗ-ឋ/0Ax=஺ᨵ©34.ArA=n9.hᩩ<Cᡂ@ᑣ9:;

216.hA,8஻▤"▣ᑣ=>(B)ᡂ@.±JA8BA7.h;Ḅ.A.³(A+3)=P(A)+P(8)8.h;<48´µ,ᑣ/I83¶(A).A.¥«²»·1<19•·Bqs5«¹@Ḅ;<º¡ᑣ³(A+3)=(B)B.2/36.h»s-ឋ/056Ḅ78-ឋ/0¼ᨵ½4ᑣ¾-ឋ/0(A).D¿44.hA.B´µ(B)ᑣA85«¹@.LP(A8)=³(4)P(B)5.h9:~eXḄÁÂjÃᑖ!£.j஺(X),ᑣ=>(D)ᡂ@.O(X)=E(X2)-[E(X)]25.h9:~eXᖹ«¹@ᑣÃX2X.3)=().^4D(X)+9D(Y)A=20I9.'"ᑡ;

33.nᐗ-ឋ/0AX=æ4ḄᐙᑖÙ⌕ᩩ<A.K_rA=rA:Z?4.éᨵ3sêᳫ2sìᳫí38îÒ3ᳫïðñí¬8òî3ᳫᑣqᳫêᳫḄᭆ᳛D.D.9/25¬D7-51_45J-4310.rᩭ᝱X~N஻஻¡Ḅ3s᪵XrX2X3,ôLᑣᑡᔜ3,=!]W>C¥ze.஻³15.ᙠrᓫ᝱N஻Cf2ḄᎷøùú⚪Tøùû4üḄú⚪B.B.¡Ãøùᙳa2.ᑡ⚪ḄC.C.ᔣ212••.ᓃ,஺Ḅ6.ᑡfgḄA.A.▣ᑣA▣5.ᑡ⚪¥ḄD.D.TḄᱯᔣḄឋᔠḄᱯᔣ4."▣4〉ᔠᩩ<D%ÿḄr.D.ZIឋᐵḄᑡᨵᨬ!ᑡ7.▣τ3Ḅ▣.5-)25-2I6.⚩ᙳᒴḄ"ᦪ3”Ḅᭆ᳛B.B.1/114.⚩ᙳᒴḄ"ᦪ4”Ḅᭆ᳛C.C.1/122.2ᔣ!"0%,%,%ᑣ“஺1%஺3%&'8(-B,22.*+",-*2=./0Ḅᐙᑖ3⌕ᩩ0,ᐸ7//,a=L2,3•9:+%-஻3=011+"0"---------------------------------[5+ᙳ=஺33ᑣ>ᑡ@A7(BCDḄ.=PAPB

412.EFGḄC᝱IJẑL஺2Ḅ:M᪵O%[,%2,•••,%”/PQ“ḄRSTU⌱ᵨḄ᪵OXᦪYZ.B./ᑖ3.[\▣-ij-io3]7ᐗ^“C.108.*▣A.⌮Ḅᐙᑖ3⌕ᩩB(.&|4|w0X.+2x,-4X=Iri3xCDḄD.D.ឋᨵ2.᝞CᡂwᑣAxBEw.=g-A3=U3.10ᝄᑶ7ᨵ37ᝄḄᝄᑶ1ᑣ3Mὅ7ាᨵ17ᝄḄᭆ᳛D.D.3X0.7?x0.34.E,8⚪CCDḄ.4᝞!ஹn#$ᑣ#$5.Ḅᡂ᳛ᑣᙠ3¡¢7&£ᜫ¥1Ḅᭆ᳛D(.D.1-P3+PI-P2+P2I-P&ஹ'(⚪*+,⚪3ᑖᐳ15ᑖ.1.§8ᙳ3▤*▣©=(©=3,ª”:34'8]=78.2.§A஻▤*▣¬ᙠᦪᐔ®¯"ᔣ!X,°mAX=/X,ᑣ±AḄᱯ³´.3§µ!¶o12],ᑣa=_______0.3.~0.20.5a4.§Xµ!OX=3º»஺3X-2=_27_-5.§3P¼ᦪ஺Ḅ:M½¾¿!,ᑣᨵ___EA=0.6.§Bᙳ3▤*▣ব=-6,Â=3ᑣÃ4'Ä(3Ã8.

57.§A஻▤*▣¬ᙠᦪ%®¯஻ᔣ!x,°mAX=/IX,ᑣ±XA/Åᱯ³´.Ḅᱯ³ᔣ!.8.Ä(4)=0.8,P(AB)=0.5,ᑣP(AB)=0.3.9.᝞µ!xḄÆÇE(X)=2,E(X2)=9,ÈÉO(2X)=a.10.BP¼ᦪḄ᪵OXᦪ±Ê¿!.11.§A,/?ᙳ3▤▣ËU=Ì|=3,ᑣÃ2AB-Ã⁐_12.§D111,.24=04007013.§ಘ,ÏM,ÈÉÐÑÒZÓ&£ᨵ:MBÐÑḄ⊤Ô_4(Õ+Ö).14.§µ!X~8(100.0.15),ᑣE(X)=15.15.§ØÙ…x”ᩭÜC᝱IJḘ“஺,Ḅf᪵OÞßàᑣ஺প=nT16.§83▤▣ᐸ7â=3,©=2,ᑣ|24B1=12.17.ãa=1_»*+"äx,+x=lᨵå'n..2[ߟ$—AX=-1218.Ä(A+B)=0.9,P(A)=0.6,P(B)=0.5,ᑣ"..19.æçèµ!*ḄêëXᦪḄ“*12ஹ°341,ᑣE(X)=2/3.'[0,ᐸï20.¼ᦪ9Ḅ¾¿!ðñòᔲ=0,ᑣ±68Ḅ½¾¿——.n1.ôᑡA38qḄᐗ^õḄzᦪöA,Ḅ´=÷è.5I21072.▣A,5,C=(ùú“ñòû="ᑣAx8ᑖysXs,஻X஻▤▣.3.§]ᙳ÷▤.⌮▣ªOA-T'஺B=8TO|A஺4.oឋ*+"Ã+%+ஹ+%=3:ünḄÜᵫP!ḄMᦪ2./X)+3X+2X+4X=62342X1+x—x=334

65.§4ᐗoឋ*+"þ8ᨵnËÓ(ð)=1,ÈÉþ8Ḅ/ÅÿḄẠᨵ_3_ᔣ.6.48ᡝ(48)=P(A]P(B),ᑣ43.7.!"#XḄᭆ᳛ᑖ'012Pka0.20.5ᑣ(=0.3.012ஹ8.!"#X~,ᑣ4X.0.40.30.3J9.x!"#+,D(X)=2,-.஺(2X—7)=2.10.0ṺḄ5᪵34567ᐸ9X,,x,x,x,x,(:ᑖᦪ),9=>N(஻234/)/A,ᙠ஺=0.01CDE4=Ao,ᑣFGHI.,v/Vs1.A,Bᙳ஻▤N⌮P▣⌮P▣ᑖRA-1,8',ᑣ('A)T=_(AT)'B.2.ᔣ%=(1,1,0),a=(0,I,]),«,=(1,0,k)WឋᐵZ!U=.-123.+,[(A)=0.8,P(AB)=0.2,ZUp(A-B)=_0.6.4.+,!"#xj-i025],-.E(X)=2.4.~10.30.10.10.5J,iio45.᳝j2,…X|0kᩭmn᝱pqN(஻,4)Ḅf᪵3ᑣs

75.᪵3%],%,X”ᩭmpqX~N(0,1)(=_!_>.ᑣX~N(0,—)7.▤P▣AḄᑡ=1,ᑣ,22o08.ᔣ¦,᪀ᡂIᑣᦪ_.w2%130-2k-29.4ᐗWឋ¡8ᨵ(r(¢)=1,-.¡8Ḅ£¤Ḅ5¥ᨵI¦:MNOᔣ.10.A,8§¨(P(A)>0ᑣ[(B|A)=0.11.!"#x~U[0,21,ᑣD(x)=1Z1.12.JkA,©ᦪoḄIªH(ᡂ«=஺,Z¬஺ḄªH.1.2-101-4000-12.τkᐵ®xḄII¯⚗ᑣ±¯⚗I⚗Ḅᦪk23.A3x4P▣B2x5P▣ᑗ³´4CEᨵµ¶ᑣC5*4P▣.4.t▤P▣·=06-35.12,ᑣ(A+8)=A4-120-5-180.B3-14-346.A,8ᙳ3▤P▣(=ើ=—3,ᑣ2ABi=t7.A.Bᙳ3▤P▣(ব=-1,»|=-3,ᑣ3(AZT)2|=38A=1an½P▣ᑣa=0.019.P▣[2-12]Ḅ¾24020-3310.A,¿kN⌮P▣ᑣÀA஺ÁO.\oAOAl21.Â2=äWឋJᓰ+=0ᨵÅÆ.[/tV]+x=022.ᔣÇ=[o,o,o],2a[1.1.1]ឋ"ᐵ.

83.ᔣ[1,2,3],[1,2,0],[1,0,0],[0,0,0]Ḅ¾᧧.4.¤WឋaÉ+a/2+%%=0Ḅᦪᑡ%Ê|=0ᑣËᨵ%,(ᦪᑡᔣÌ,a,%kWឋ"ᐵḄ.25.ᔣ%%=Í1],%=[0,0]Ḅ᩽ᜧWឋᐵkÊЕ6.ᔣᵫ,a…aḄ¾P▣[%,a,….ajḄ¾.227.Wឋ·x=o4ᨵ5A,(¾(N=3,ᑣᐸẠ4WឋᐵḄᔣᨵ2.8.WឋAXiᨵx“kḄIᱯ(AX=oḄẠÇ.X,ᑣAX=஻ḄÔXQ4-/T]XJ+k2^2,9.ᐘkAḄᱯÖ×ᑣ%k|஻-Ì=0Ḅ᪷.10.P▣A4I|=A',ᑣAn½P▣.L>ᦪØ1,2,3,4,54ÙF3ᡂÚᨵÛÜᦪØḄÝᦪᑣËÝᦪkᏔᦪḄᭆ᳛2£5.2.+,P(A)=0.3,P(8)=05ᑣÂA,B§¨ÃP(A+B)=_0J_,Iß0.33.A,8(Bu4,Zà)P(4+B)=25).4.+,P(AB)=P(áᱏ)P(A)=pᑣP(B)=1-P-5.A,B(P(A)=p,P(B)=g,ᑣP(A+B)=p+q-pq.6.+,p(A)=0.3,P(B)=0.5Z!lÂA,8ÃP(A+8)=0.65.,|0.3.P(4B)=7.!"#X~U(0,l),ᑣXḄᑖ'ᦪF(x)=0*‘°.x0<;r<11x>l8.XQ8(20,0.3)ᑣs(X)=.9.X~N(஻R2)ᑣP(|X-“43G=2জ(3).10«E[(x-E(x))(r-E(ã))]tä!"#(x,y)Ḅ&'(•1.GHå)*+,-ᦪḄ᪵01ᦪ.2.©ᦪªHḄæ~kç2345623.ᵨḄ©ᦪçªHᨵ2374ᨬᜧ9ᯠ2æ~.3éᓃëªHìíḄÛ⌕᪗ïk᦮ᨵᦔឋ.4.X],2…ñkᩭmn᝱pq(/+,)Ḅ᪵3×ᢥóôḄõ℉ឋ÷øaDEHq"=஻0;H/!*Mo/◤⌱FGHu=XI.a/y/~n

95.ᎷDE4Ḅõ℉ឋ÷øaýII஻01>"”Ḅᭆ᳛.ஹ⚪16ᑖᐳ64ᑖA1.<▣I-12,ᨵAX=B',>X,-I5'A=2-35ᔤ1I3-24ᑭᵨ!"ᣚ$12100][I-12100250I0->0-II2-1034001015-1-1ᓽ-201ᵫ'▣)*+,-./$A7-2-15-1-12.<▣n-101[20O'>A'B.A=-121,5=050223005ᑭᵨ!"ᣚ$10100][I-I0100n-1o1ooiri-ioi0O--1210I0->01I11°->011110T0I0-5-31223001043-20I00-1-6-4I00164-100-4-3ᓽ-4-3ᵫ'▣)*$00-5-3A-'-5-30064643120-155A'B=-5-35-155601220-53.?,,ᐸ23231>XA357.B5858100ᑭᵨ!"ᣚ$230023002300204-6335700->0-1-2-30023-10->1005-5258100010-2-5000-11-200-12-100-64-Iᓽ-64ᵫ'▣)*./$005-52AM5-52002-12-64231r813X=AlB=5-558=-15-23-1210>812

104.<▣0-1-325/3▤ᓫD▣ᨵ/rx=5,>x.A-2-2-7.B01-3-4-8-301.ᵫ'▣7*./$1000113I-A0123700349ᑭᵨ!"ᣚ$11310013100113O-110M33-I00-31237010T01-21001100I00101001_34900100-30100-110011-10011-1ᓽ-32(/-4U0-1ᵫ'▣)*./$1-3225-42X=(I-AY'B=-30101-9-1511-30565.8'▣120>1?X2.12-142-1A.80-20-10II431-2121100202010-2-10-2-1-252-1-140-20-20-171137113143013(2)9(/—A)'0-20-221-4021-4-3-54ஹᡠ;/—A30-20I1ஹ-25-2212-I021015-3-4-3oJ-2,-96.8'▣02213],'▣@AAX=B'.A=14ஹB=-3562192100](\14010ஹ14010-»0121001001J(0-3-70-21,

11(\02-10ஹ005-325-32$->0200007-42A-17-421°0-13-20-321-3252ᡠ;X=AT*=’2-3A13-18ஹ7-42516-292-1H36J1-713J-127<▣>1ব2.A=2-353-241)12|11-12-12|4|=2-35=0-1-13-20-202ᑭᵨ!"ᣚ$2100'120011-I200'-12002-35000-200-11001-12-10340001-2000-11005-1-Iᓽ0A75-1322-A=,B=,liXA=B,ZX(A/)3103010-5310-53—>—>->2523250100012$ᵫ4T-53[\X=BA132-122-12323]2.^_AX=6,`A=357B58ZX581009.<▣2323,>)1%DX24A=0ஹB=2001021923-1|a=஺-10023I)ើ11212()122ᡠ;|A5|=|A||B|=2.2923-100F=0-100000030I01001/23/2ᡠ;1/23/20-1001-1000-1IA0001001000000

1210.?,▣'IJ=4X+8ᐸ0101L1M|],>X.A-111B20-1035-39/-AX=B,HI-I0100'n-An10-1010T10-2001)I0I01o10002-10I-1Io00-I2-I00I0-1I000I-1ᓽ2-1F)■20I-02-TM1-1'-13ᡠ;X=(l-AyiB=-12-120=-2401-15M3-3311.<ᔣ%=(1,M2,4,-1)'__%=«8,-16,4)'__%=(-31,-5,2)/__«=(2,3,1,-1)',>Q!!!4RᔣḄSTUḄMR᩽ᜧឋᐵ.91-421I-4-32-32'_2830700->4-16-507-70002-1200000ᡠ;%%%)=3.KḄ3L᩽ᜧOឋQᐵST%ᡈ%%%.12.iS-121103tτ4],>AC+BC.A3-2I0-1221-1002-II4024'6-410-AC+BC=(.A+B)C=3-2I201-221000213ᑏX4▤YᑡZ1020ᐗ\Ḅ]ᦪ^_Z`>ᐸa.-143602-53310o2I)12(Td436=042=(T)4'2-136=452-530-53

1314>'▣1011011ḄV.110110010121012113201101101110110111011011bc1101100fd01-101—1—101—101—1—1101210100011-1000011-10211320101—112-2-100011—10101101101-101—1—1ᙳ00011-100000000R(A)=315.ᵨWᐗ*Oឋ@AS%!-3X-2X-x=62343X|-8X+X3+5X=024-2x,+x-4X+X=-12234-x+4XMeM3X=2}241-3-2—161-3—16101923-484iᵯ3-81504ᵯ0178—10178-18A=-21-41—10-5—10002739-90—14—1-3201-3-4800-10-1226101923—48101923—4810042—1243/4+^T9ᔣ110178—180178—1801015—46g003-312001—14001—140056-130056-1300011-33

14-10042-12410002-42r+r411-]5r+r~~r401015—46420100—1—->001—14001010001-30001-32...@ASX2-1*3=1*4=-3A2.>ឋ'IḄᐰfg.ghi'IḄjk▣ᓄ▤mn@ASḄTZx)=1+5x4=/4ᐸ\]4^ᵫ_`aA=74b4=o,$ᑮ@AḄ3Lᱯx°=ioooy.@ASjkḄl@AḄTZX=5x14X2Xᐸ\^ᵫ_`aX3X4b.%=1,$ᑮ@AḄ3LmẠoxI=51-11'.sT@ASḄᐰuX=X஺+kX1ᐸ\Kyz{ᦪ2.o2pqarឋ'I+x-2x-x=—22342X|+x+1x+3=6239}|+7x+4*3+=4+12ᨵgᙠᨵgḄtuv>'IḄᐰfg.@ASḄ'▣ᓄ▤

15•I-2-1-2I1-2-1-2H|-2-1-21Fl094821736->0-1II510-♦0-111510->01-11-5-109741A+\][0-22210N+191[o000A-\\[o000A-lᵫ`4rl@ASQ2=1@ASᨵ஺....7ᑖl@ASᓄJ*=-9X-4X34[x=11x+5X234ᑖb=1,=0/=0,ᓃ=1,$l@ASḄ3LmẠoX,=[-91110],,X=[-4501]'b%=0,4=0,$^l@ASḄ1ᱯ2X=[8-100Ofᵫ$@ASḄᐰuoX=X+kX+kXᐸ\᝕2yz{ᦪ……16ᑖoll223.>ឋx,-3jr,+X3-x*=I'I-2x,+7x-2x+x=-2234x-4x+3x+2x=112342xτ-4x,+8x+2x=234Ḅᐰfg•@ASḄ'▣ᓄ▤X,=I+5Xᐸ\X,^ᵫ_`a@ASḄ34X=i2j3=74b=o,$ᑮ@AḄ3Lᱯx°=ioooy.@ASjkḄl@AḄ3x.=5x.I4ᐸ\^ᵫ_`a■X2=X4.X3=3X&bX=1,$ᑮ@AḄ3LmẠoXτ(51-11)\4sT@ASḄᐰuX=X஺+ZXIᐸ\Ayz{ᦪ4.>ឋ'I

16X(4-X,4-X+2X=3}4x-2x-3X=-4234-3x]+2x-x-9x=-52342xτ-*2+3x$+8=8Ḅᐰfg.@ASḄ'▣ᓄ▤10021010-100011200000jkl@ASḄ3y——2X'-4T^ᵫ_`a=X4ஹ*3=_X,bX4=1,$l@ASḄ3LmẠoX1=[-21ifb%=o,$l@ASḄ3LᱯX=[1020]'oᵫ$@ASḄᐰuX=X+kXᐸ\kyz{ᦪ0l5wxឋ'IḄMAT02-320000RẠgy4g.9200101/2002-3201-3/200000000X.=------X.$323ᐸX34T^ᵫᐔ3%2=l3-ib=2,ᓃ=0$X]=[-1320]'X

17b=0,x&=1,$X?=[o-101]'.ᡠ;mX,,XzT@ASḄ3LmẠo.@ASḄx=kN+kX,ᐸ\$%Tyz{ᦪ.226.8lOឋ@AS-32+2ᓰ=0¢@ASᨵ£¤ᙠᨵ£,,2x,-5X+3X=0233X|-8X+Ax=02y9ᱏ=-321n-32'10-12-53-01-1f0I-13-8X012-600A-5"5=oᓽ4=5r(A)<3,ᡠ;@ASᨵ£.@ASḄTZ|*=ᐸ\^ᵫᐗ.3=X3b/=1$%=(1,1,1)'rᑣ@ASḄmẠo©%.^%,ᐸ\ᵨyz{ᦪ.>°.7.opqarឋ'Iª3ᜩ+¬4=2<®3++%=3[2x-3¬2++5%4=¯+2lᨵgᙠᨵgḄtuv>'IḄᐰfg.@ASḄ'▣ᓄ▤1-10121Tl-101211IT0I21Fl0-1-211-2143-0-1131->0-1131Toi-1-3-12-315/1+2()-1I3A-20000X-300002-3ᵫ`!3@ASQ஺a=3@ASᨵ஺8ᑖjkl@ASḄ3[²=£+2X4(%3p4T^ᵫ_`a)lx=x+3X234ᑖbᓃ=I,X,=()“=Ox”|,$l@ASḄ3LmẠoX,=[1110]',X=[2301]'2b*3=0,4=0,$l@ASḄ3Lᱯ

18X0=[1-1஺0]'ᵫ$@ASḄᐰu8*qarឋ'I.2X1-x+=12x+2X-x+4X=2ᨵO,rZsMtOx234x,+1x-4X+11X=k234O)uvwxḄz{|▣ᓄ▤2-111r12-142'A=12-142->0-53-7-3->17-411k05-37k-212-1420-53-7-3,k=5vwxᨵO`vwxḄMtO0000k-5416-X-X4=75753T5(ᐸ1X4ᵫ_)33725535+3X+3X+2X+ᓃ=02349.>wxឋ'IJ2X1+6X+9X+5X+3X=0Ḅg2345-Xj-3%2+3ᑍ3+2%=0gh4=!33211332126953700311-1-33020062313321I3010700311-003100000ij|_0000IX,=-x.3]■ᐸ\%ᙳT^ᵫᐗ^=05=1=0,ᐜ=(—3,1,0,0,0)X■^2—஺M=3,$·=(—3,0,—1,3,0)ᡠ;@ASḄ3LmẠo{%,%}.@ASḄkஹX1+kXᐸ\ᱏºTyz{ᦪ.2210.<ᨵឋ'I11

191qar'IᨵMg?ᡈᨵ%g?j02-11-2/-»]01-AI-221-23112A20A-\1-ZA(l-A)00(2+2)(1—4)(1+2)(!-A)2Ha-2R(A)=R(T)=3@ASᨵ¼34=1,R(A)=R(½)=1,@ASᨵQ¾¿11.ᑨᔣ£ᔲᵫᔣa,,«,a,ឋ⊤XᑏXM⊤X'Z.ᐸ2F71-À=%=9=1-10—3—1-21ᔣa/ÂᔲᵫᔣaSÄ஺2஻3Oឋ⊤°HÆ@AS%ᓰ+%2+0/3=£ᨵ-23-5-81037•=[%,%%,£]=::X01-341»0010-1173-2I-10_000571R½wRA@ASQ£ÇÂᵫᔣaÈ,%,ᑁOឋ⊤°12.3vᑡᔣḄ`1ᑨᔣᔲឋ"ᐵ.ÊᔣaSOឋjᐵ13.>wxឋ'I

20]-3X+j3-2ᐗ4=02—5x)+/—243+3j4=0-x-\lx+2X-5X=012343j1+5X+4X=024ḄMRẠgy.gh1-31;-31-25”—51-2—143-7-1-1120-143-7000350014-310003-511U-----------10---10—0142142i3oi-A101---01014214214000300010001000000000000@ASḄ3=-+*bᓰ=1,$mẠo14.>vᑡឋ'IḄᐰfg.x-5X+29-3z=11x2-3x+x-4X+2X=-5]234<-Xj——4I=175X1+3/+6%3—%=—]910-172T42O-7O280oo0ooo.20ii71τ7-2ᵫ+1J_.••@AS3V1-27211X2=~~X3M/4M920000000000

21bp3=஽ᓃ=ÎÏyz{ᦪ$@ASA3.8XQN(3ஹ4)ÄপÑ(57).(Ò`sako.8413.0>(2)=0.9772,জ(3)=0.9987))lp(57)=P(q>Ó)=P(B>2)=>P(BV2)=13জফ=1-09772=0,02282.T&X-N(3,4)Ö>পP(X<1);ফÑ(5(-1)=1-0>(1)=1-0.8413=0.1587(2n/uvrஹ5-3X-37-3ஹX-3P(5(1)P(X<11);(2)P(5

22á¿â◌&åὀ3☰Ḅᭆ᳛T08Êèéêëèì5>(1)í\☰Ḅᭆ᳛X(2)èéêëèì5í\☰ḄᦪXQ8(5,0.8)(1)8A:"í\☰,ᑣP(A)=P(X>0)=1-P(X=0)=1-C,0.8°0.25=1-0.00032=0.99968.(2)8B"áó4í\☰"ᑣP(B)=P(X>4)=P(X=4)+P(X=5)=C50.840.2+C50.850.2°=0,73728.6.8A.BTôLõö÷øÒ`P(A)=0A_i_P(B)=0.5,P(B|A)=0.45>)(1)P(AB)X(2)P(A+B)à(1)P{AB)=P(B|4)/,(4)=0.45X0.4=0.18(2p(X+B)=1-P(A+B)=l-[P(A)+P(B)-P(AB)]=1-[0.4+0.5-0.18]=0.287.8õö"aXḄùúûᦪ>)(1)4X(2)&X),.(kx*2—1

239.X~N(3.4),(i)P(57).(প=0.8413,7)=>—)=>2)=1-<2)2222=1-0(2)=1-0.9772=0.0228•10.Ꮇ6)=0.5,P(B)=0.6,P(B|4)=஺4.P(A+B):P(AB)=P(A)P(B|A)=0.5x0.4=0.2.P(AB)=P(B)-P(AB)=0.6-0.2=0.4P(A+B)=P(A)+P(B)-P(AB)=0.7.11.x~i>.(1)ᡈp(|x-4|>2)X(2)!p(x>k\=0.9332kḄ#.(জ(2)=0.9775,জ(1)=0.8413,জ(1.5)=0.9332)•$(1)P(|X-4|>2)=1-P(|X-4|<2)=1-P(-2k)=P(X-4>k-4)=1-P(X-4

2413.XQ"(3,4).$(1)Q(1

25$4="i⍝ZN"(i=1,2)P(4A)=P(4)A(4τA)=(1-0.02)(l-0.03)=0.9506218.Ḅ'ᵬᔆ¡ᓰ50%£ᔆ¡ᓰ30%¤ᔆ¡ᓰ20%ᵬ.£.¤ᔆ¡Ḅᔠ¦᳛ᑖo90%,85%,80%,§ᑮ6j?ᔠ¦Ḅᭆ᳛.O)¡4=”¢ᵫᵬᔆ&="¢ᵫeᔆ"&="¢ᵫ¥ᔆ’8="¡ᔠ¦”P(B)=P(A)P(BIA[)+P(A2)P(81A2)+A()A(81A3)=0.5x0.9+0.3x0.85+0.2x0.80=0.865t19©ª«¬ᔣ6®᪗©°±ᑮ²'³.´µt²'Ḅᭆ᳛?¶ᡠ◤VᦪXḄᭆ᳛ᑖ·.$P(X=1)=PP(X=2)=(1-P)PP(X=3)=(1-P)2P...........p(X=A)=(l-P)Zp......ᦑXḄᭆ᳛ᑖ·?r123...k\_P(1-P)Pp)2p...(i-p)*Tp20fḄᭆ᳛ᑖ·r01234561[o.l0.150.20.30.120.10.03JÊP(X<4),P(2

2622.<[2x,0£(X),Z)(X).ᐸU---------------------$E(X)=fᶭ(x)dx=1x-2xdx=),=§E(X2)=V1f[x)dx=fx2-2x^=-x4|X=lD(X)=E(X2)-[E(X')]2=^-(1)2=B3.0)•ghP(0.20)=Ptr—1<1.67)=1-=--------------------------------------------n&gh—[஻[1E(X)=E(-Yx)=-E(X+X+……+X„)=-[£(X)+£(X)+……+£(XJ]ii212஻Ï஻n1=—njLi=jLinD(X)=D(-Yx)=-^D(X+X+……+X,)=-![D(X)+D(X)+......+D(X)]=~^'n(r2=-il2f7I2nn77XnnnnA4.¢£ᧇᑖ᪆¦ᔆ¨©ḄMᢇẈ,ᐸᢙ®XQN02.5.1.21I¯°QᢇẈ¡ᙢ²p³9ᙽµᢙ®ᓫDhkg/cm?Ḅ¶ᙳa31.12,¸QᢇẈḄᢙ®ᔲᔠ¹஻=“S”,=1,96$Ꮇ”JÐ$஻=325.ᵫgb?=1.21,ᦑ⌱2᪵UÔᦪ7==4QN0,1Õ=31.12,ÖVWY᱅=11=0371|B4=.3"2©?25=3,73CF/A/WV93|T/VnI0.37ᵫᩩ“0.975=L96,3.73>1.96=஻o975ᦑÙÚᎷᓽÛᢇẈḄᢙßà^~ᔠ¦஺

272á`u¡âãâã±äå0N᝱ᑖ·.æ06ᢇ¡ç29jèY±äéᙳ#15.1mm,!Ûᢇâã±äḄêë0.06"ìâã±äᙳ#Ḅ\]^0.95Ḅ\]_`“0.975=L96.$ᵫgO-2,ᦑ⌱2᪵UÔᦪu=ZíîN0"...cr4nï=15.1,ÖVWYð=ñ=0.02M3âã±äᙳ#Ḅ\]^0.95Ḅ\]_`ò-“0975Bï+”>.9754ôᵫᩩA/979“0.975=L96ᦑ\]_`15.0608,15.139236ᢇõX~6J஻஺04,R24jèYõJᓫø$ùúÐ14.7,15.1,14.8,15.2ûᔲýÛᢇḄéᙳõ15ᓟúa=0.05ÿ/975=1.961?.Ꮇ.ᵫ,ᦑ⌱᪵ᦪQN஺*=14.951X^11425-15^^<7/4nIa4n\0.2/"“0.975=L96,|^Z^|0,5<1,96=M=0975ᦑᎷᓽ!"#$%ᢇ'Ḅ)ᙳ+,$15ᓟ.4/0ᔆ2345ᢇ6ᩞ8᪷᪗;<=100mm,>?@A6ᩞBCDEFGH9᪷I<=Ḅ)ᙳJ$99.9mm,᪵᪗;Ks=0.47,6ᩞ<=flNOP᝱ᑖST%ᢇ6ᩞḄU,VᔲᔠYZDE[℉ឋ^)_=005,5"8=2.3061Ꮇ40)஻=100.ᵫ`,ᦑ⌱᪵ᦪ7=ab/c/Z஻_fs/4nf=99.9,g=i=Q161j2|=99.9-100=0625V93k/ಘ0.16ᵫᩩ'0.058=2.306,ᦑᎷᓽ!"#$%ᢇ6ᩞḄU,VᔠYḄ஺

285.?,¦¼½¾XQN15,0.09,¿ᵨÁᢈÃÄp³9R᪵ŵ¾ᓫDhkgḄ¶ᙳa14.9,?,'()~¸¶ᙳ¾ᔲ15a=0.05,“0975=L96Æ?Ꮇ“0:4=15.ᵫcr?=0.09,ᦑ⌱᪵ᦪu=7~No,Iᐗ=14.9,a/y/nᦑᎷᓽ')ᙳ+,o$15.6.¦ᑗᒘ¡ᙠÉÊrᑗᒘḄËÌÍÎÏÐÑ°᝱ᑖᐸ¶ᙳЮ10.5cm,᪗Ô(0.15cm.°Mᢇ©Å¡ᙢ²p4ÌÕYµµḄÖ×᝞v)ᓫDhcm10.4,10.6,10.1,10.4¸h¡ÊᔲÉ(a=0.05-ai=1.9612Ꮇ:4=10.5.ᵫCT=0.15,ᦑ⌱᪵ᦪ

29Iio1H=—>ᓰ=—x36=3.6iotrio110ஹ¢-X25.9=2.8781ªF98.rsXḄᭆ᳛vwᦪ$3+1*0+l)+^lnx,^^=-^-+^lnx.=04='1,I;I\Inxi/=19.IḄ<5IḄJ$Zᓫm:108.5109.0110.0110.5112.0I,J!"#$VOP᝱ᑖSN஻,/Ḅ஻Ḅ|J.ᙠপ᪗=2.5J2஺2`Ḅᑖy஻Ḅw$095Ḅ._115_fi=x=—^x=110tT22=AZ(X,-X)=1.875i5,=1ுM1i=l(1)¢=25£ᵫ1-0=0.95,O(A)=1--=0.975¤⊤)p=1.96ᦑᡠ$)±MNq4+a3kuog.ailM]\/nyjn(2)¢/`£ᵨ52§¨CT?,¤t(4,0.05),2=2.776ᦑᡠ$)±Mµ¶©+4%]=©08.3111ª10./3«Ḅឋ¬ᢣ᪗OP᝱ᑖSN஻,/,Oᔊ¯°ᧇb=4²¤10³᪵«ᙳJ$17,[℉ឋ^)஽=0.05ITµᎷ4)"=%Vᔲᡂ·.B’ᵫ

300(A)=1--=0.975'¤⊤6L962¹$\U|=0,2371.96,ᡠ"º»//(,11./'½wOP᝱ᑖS¾¿ḄᙳJ$2஺0,Àᣚ4ÂᩞᧇO3«ÃFG²8³᪵«IḄ½w$(ᓫcm):20.0,20.2,20.1,20.0,20.2,20.3,19.8,19.5TᵨÂᩞᧇÄḄ')ᙳ½wVᔲÅ4Æᓄ(a=0.05).ᵫᩩ'!x=20.012552=0.0671_..I-An.,20.0125-20,().0352=t(n-1,0.05)=f(9,0.05)=2.62n11m----i=i-----------~-1=------=u.Ijcos/4n0.259/ᡃ0.259•••|T|<2.62bHoᓽᵨÂᩞᧇÄḄ')ᙳ½wÉᨵÆᓄ஺ËஹÍÎ⚪(⚪6ᑖ)1.A,8Ðb▤?Ò{▣xÍ4τ8iV?Ò{▣.ÍÎA,BVÔ▤{▣ᵫ{▣ḄÕឋU!(A+B)'=A'+B'4BV?Ò{▣ᦑᨵ4'=A,"=Bᓽ(A+B)'=A+BᵫÖ!A+BiV?Ò{▣Í×.2FGØ'ÙÚÛ·xÍA,BiÙÚÛ·.ÍÎP(AB)=P(B)-P(AB)=P(B)-P{A}P(B)=-P(A))=P(A)P(B)ᡠ"iÙÚÛ·.Í×.3ஹ4B$FGØ'xÍP(A-B)=P(A)-P(AB)bÍÎᵫØ'ḄᐵÝ!A=AU=A(B+B)=AB+AB=AB+(A-B)^0(A-=0,ᦑᵫᭆ᳛ḄឋU!P(A)=Þ(A-B)+P(A8)ᓽP(A-B)=P(A)-P(AB)Í×4%.%VឋàᐵḄÍÎ9+a,a+a,a,+aiឋàᐵ.223

31.ÍÎᨵ5áᦪk,k,kj,âA2ᓰ(%+%)+&(%+æ)+&(%+஺3)=0ᡂ·ᓽ·]+ᦇ3)«+(ᓰ+&)&+(ᦇ2+&3)஺3=஺ᵫᓽ஺2஺3ឋàᐵ,ᦑᨵᓃ+ᦇ3=0k+k=0}2j+ᦇ3=°êëìáíᨵ£,=&-,=0,ᦑ“,+%,%+%%+%VឋàᐵḄ•Í×5.<஻▤▣çè(A/)(A+/)=O,ᑣé⌮▣.ëì¹$(A—I)(A+/)=A?—/=(),ᓽ=/ᡠ"ª$!⌮{▣.6..

32RSBÂA\½¾▣ᦑAA=/,ÂÄAÅ⌮`4T=AᡠÈᨵ(A')'A'=(i4'=(M)'=/'=IᓽATU▣10.W/8XYZ[\]^R)P(B)=P(A)P(B\A)+P(A)P(B|A)ÀÊ)ᵫËÌḄᐵÎÅ_B=BU=B(A+A)=AB+ABÄ(AB)(ÏB)=0ᦑᵫÐÑÒÓÔÕÑÒÓÅ_P(B)=P(AB)+P(ÏB)=P(A)P(B|A)+P(Ï)P(B|Ï)ÀÖ.11.W_▤#a?▣^R)g+&*b#a?▣ÀÊ)Â(AB+BA)'=(AB)'+(BA)'=B'A'+A'B'=BA+AB=AB+BA.ᦑÅ_\×Ø|▣ÀÖ஺12.Wc/7▤?▣d£=0,ᑣ(/-4e=/+A+f&RSBgh(Z-A)(/+A+A2)=I+A+A2-A-A2-A3=/-A3=1ᡠÈ(/-A)-1=I+A+A213.WᔣÈ,a,aiឋjᐵl0ஹ=£1+%2_:_᜛2=3a?+2a)/=4%-%,RSᔣ2A᜛2&ឋjᐵ஺RSB¡&⊈+&62+⁐=°ᓽ&](%+2a2)+k(3a+2a)+k(4aM4)=022333(Û]—Û3)%+(2kI+3k2)%+(2k2+4k3)%=஺Âa,,a,□Ýឋßᐵ•ᡠÈ2ᓃ-á=(),2kஹ+3Ḅ=02"+4᝕3=0Oã3=0,&=0,%=0,äÄA,5,43Ýឋßᐵ.14#mn▣A,^RA+A'#a?▣.RSB(A+A')'=A'+(A')'=4+4=A+A'/.A+A'\×Ø|▣

3315Aó▤'▣44,=/ãëô|=|ᡈM1.ëìhhA஻▤▣A4,=/.•.|==2=|/|=1Ml=1ᡈ|-116f▣ãëAh▣.ëì•••A▣A-1=A(A')-'=(A-|)_|=A=(A'yᓽA'▣17.ãëhõM4öᔣ,=1,%%å÷éᵫᔣឋ⊤⊤ᑏ!"⊤.ëìh#4$ᔣ&'⊤(=«]«)+a(a_%)+%(%-a)+a(a-a)222443=(qF)G[ᙢ-a^%+,+a^18.ãëhឋ'IᨵgrUᨵMgḄᐙᑖð⌕ᩩ½h"ûḄwxឋ'Iüᨵ¼g.ëìh

34423ᨵ6ᓽR(7)=R(4)="784X=Bᨵ69:9R(A)=„8;<=>ឋ23AX=0?ᨵ@6ḄᐙᑖC⌕ᩩFR(4)=n.AX=Bᨵ6ḄᐙᑖC⌕ᩩF;<Ḅ=>ឋ23AX=஺?ᨵ@619.<%é⌮▣AḄᱯa2r0,ãëh,▣H1Ḅᱯa.--------------------------------4----------------ëì)I'⌮▣AḄᱯLMNᙠᔣ&/A&=/igq=(A-'AX=A-1(æ)=/(ç=ᓽJ▣ATḄᱯLMA20.ᵨý'7ixþf=X|~+x2+xX+X)+2X|x-2214-2213+2ÿ14ᓄ᪗9.6f=X]+ᵯS~+J—2%7-^4—=%1+x>2+4+2x^U+4++-=X]+122+W$-X?+YS2_Z%=X]+ᑍ2=\_+2++4(=஽/4=%W>3ᓽx2=.’3*W=?2+èM.'4o=>'4z»222ᑣ`>aᓄ(᪗daJ->1+'2e3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭