欢迎来到天天文库
浏览记录
ID:6606451
大小:557.50 KB
页数:18页
时间:2018-01-20
《四川省木里县中学中考数学 圆精讲复习》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、圆精讲复习知识点一、圆的定义及有关概念1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。圆上任意两点间的部分叫做圆弧,简称弧。连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。在同圆或等圆中,能够重合的两条弧叫做等弧。例P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;最长弦长为_______.解题思路:圆内最长的弦是直径,最短的弦是和OP垂直的弦,答案:10cm,8cm.知识点二、平面内点和圆的位置关系平面内点和圆的位置关系有三种:
2、点在圆外、点在圆上、点在圆内当点在圆外时,d>r;反过来,当d>r时,点在圆外。当点在圆上时,d=r;反过来,当d=r时,点在圆上。当点在圆内时,d<r;反过来,当d<r时,点在圆内。例如图,在中,直角边,,点,分别是,的中点,以点为圆心,的长为半径画圆,则点在圆A的_________,点在圆A的_________.解题思路:利用点与圆的位置关系,答案:外部,内部练习:在直角坐标平面内,圆的半径为5,圆心的坐标为.试判断点与圆的位置关系.答案:点在圆O上.知识点三、圆的基本性质1圆是轴对称图形,其对称轴是任意一条过圆心的直线。2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
3、垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦对的弧。3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。-18-圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。4、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。圆周角定理推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等。圆周角定理推论2:直径所对的圆周角是直角;90°的圆周角所对的弦是直径。例1如图,在半径为5cm的⊙O中,圆心O到弦AB的距离为3cm,则弦AB的长是()A.4cmB.6cmC.8cmD.10cm解题思路:在一个圆中,若
4、知圆的半径为R,弦长为a,圆心到此弦的距离为d,根据垂径定理,有R2=d2+()2,所以三个量知道两个,就可求出第三个.答案C例2、如图,A、B、C、D是⊙O上的三点,∠BAC=30°,则∠BOC的大小是()A、60°B、45°C、30°D、15°解题思路:运用圆周角与圆心角的关系定理,答案:A例3、如图1和图2,MN是⊙O的直径,弦AB、CD相交于MN上的一点P,∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.(1)(2)解题思路:(1)要说明AB=CD,只要证明A
5、B、CD所对的圆心角相等,只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的.-18-解:(1)AB=CD理由:过O作OE、OF分别垂直于AB、CD,垂足分别为E、F∵∠APM=∠CPM∴∠1=∠2OE=OF连结OD、OB且OB=OD∴Rt△OFD≌Rt△OEB∴DF=BE根据垂径定理可得:AB=CD(2)作OE⊥AB,OF⊥CD,垂足为E、F∵∠APM=∠CPN且OP=OP,∠PEO=∠PFO=90°∴Rt△OPE≌Rt△OPF∴OE=OF连接OA、OB、OC、OD易证Rt△OBE≌Rt△ODF,Rt△OAE≌Rt△OCF∴∠1+∠2=∠3+∠4∴AB=C
6、D例4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?解题思路:BD=CD,因为AB=AC,所以这个△ABC是等腰,要证明D是BC的中点,只要连结AD证明AD是高或是∠BAC的平分线即可.解:BD=CD理由是:如图24-30,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB∴BD=CD知识点四、圆与三角形的关系1、不在同一条直线上的三个点确定一个圆。2、三角形的外接圆:经过三角形三个顶点的圆。3、三角形的外心:三角形三边垂直平分线的交点,即三角形外接圆的圆心。4、三角形的内切圆:与三角形的三边都相切的圆。5
7、、三角形的内心:三角形三条角平分线的交点,即三角形内切圆的圆心。-18-例1如图,通过防治“非典”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图24-49所示,A、B、C为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.解题思路:连结AB、BC,作线段AB、BC的中垂线,两条中垂线的交点即为垃圾回收站所在的位置.例2如图
此文档下载收益归作者所有