第7章_锐角三角函数的复习(2).ppt

第7章_锐角三角函数的复习(2).ppt

ID:61585403

大小:351.00 KB

页数:21页

时间:2021-03-02

第7章_锐角三角函数的复习(2).ppt_第1页
第7章_锐角三角函数的复习(2).ppt_第2页
第7章_锐角三角函数的复习(2).ppt_第3页
第7章_锐角三角函数的复习(2).ppt_第4页
第7章_锐角三角函数的复习(2).ppt_第5页
资源描述:

《第7章_锐角三角函数的复习(2).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第7章锐角三角函数复习三角函数一、基本定义:你觉得运用时应该注意什么?例1:如图,△ABC中,AC=4,BC=3,BA=5,则sinA=______,sinB=______.cosA=______,cosB=______.tanA=______,tanB=______.ACB345练习1、如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,AB=7,BC=3,则sin∠BCD=_____.练习2、Rt△ABC中,∠C=900,则tanB=______,cosA=______.正切值随着锐角的度数的增大而_____;正弦值随着锐角的度数的增大而_____;余弦值随着锐角的度

2、数的增大而_____.增大增大减小二、三角函数的增减性:异名函数化为同名函数练习1、比较大小:(1)sin250____sin430(2)cos70____cos80(3)sin480____cos520(4)tan480____tan400练习2、已知:300<α<450,则:(1)sinα的取值范围:________;(2)cosα的取值范围:________;(3)tanα的取值范围:________.三、特殊角的三角函数值:α三角函数30°45°60°sinαcosαtanα例1、计算:例2、已知△ABC满足则△ABC是______三角形.1、在直角三角形中,利用已知的元素求

3、出所有未知元素的过程,叫解直角三角形.2、知道直角三角形中的2个元素(至少有一边),可以求出其它三个元素.四、解直角三角形:例2、如图,在△ABC中,∠A=30°,tanB=AC=,求AB的长.ABC例1、在△ABC中,∠C=90°,a=,b=,解这个直角三角形.D变题、如图,在△ABC中,∠C=120°,tanB=AC=,求AB的长.BAC五、锐角三角函数的应用例1、如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km,点B位于点A北偏东60°方向且与A相距10km处.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5min后该轮船行至点A的正北

4、方向的D处.(1)求观测点B到航线l的距离;(2)求该轮船航行的速度(结果精确到0.1km/h)参考数据:D北东CBEAl60°76°F例2、如图,在小山的西侧A处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C处,这时热气球上的人发现,在A处的正东方向有一处着火点B,10分钟后,在D处测得着火点B的俯角为15°,求热气球升空点A与着火点B的距离.(结果保留根号,参考数据:,,E例3、如图,港口B位于港口O正西方向120海里外,小岛C位于港口O北偏西60°的方向.一艘科学考察船从港口O出发,沿北偏东30°的OA方向以20海里/小时的速度驶离港

5、口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C用1小时装补给物资后,立即按原来的速度给考察船送去.北30°30°东OBCA北西(2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇?(1)快艇从港口B到小岛C需要多少时间?ANMBFCED问题3:如图是某宾馆大厅到二楼的楼梯设计图,已知BC=6m,AB=9m,中间平台宽度DE为2米DM、EN为平台的两根支柱,DM、EN分别垂直于AB,垂足为M、N,∠EAB=30°,∠CDF=45°求DM到BC的水平距离BM的长.如图,A、B两地之间有一条河,原来从A地到B地需要经过DC,沿折线A→D→

6、C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=11km,∠A=45°,∠B=37°.桥DC和AB平行,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km)sin37°≈0.60,cos37°≈0.80参考数据:FEDCBA45°37°如图所示,A、B两城市相距100km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内.请问:计划修筑的这条高速公路会不会穿越保护区.为什么?PABEF30º45º参考数据:

7、如图,工件上有一个V形槽,测得它的上口宽为30毫米,深为12毫米,求V形角的大小.如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为52°和35°,则广告牌的高度BC为________米(精确到0.1米)(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)AD6米BC35°

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。