欢迎来到天天文库
浏览记录
ID:61289347
大小:546.21 KB
页数:8页
时间:2021-01-24
《2019-2020学年高二数学双测AB卷3.3 生活中的优化问题举例单元测试(B卷提升篇原卷版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题3.3生活中的优化问题举例单元测试(B卷提升篇)(浙江专用)学校:___________姓名:___________班级:___________考号:___________满分:150分考试时间:120分钟题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分50分,每小题5分)1.(2018·湖南雅礼中学高一期中)把长为的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )A.B.C.D.2.(2018·湖北高二期末(理))某品牌小汽车在匀速行驶中每小时的耗油量(升)关于
2、行驶速度(千米/时)的函数解析式为.若要使该汽车行驶200千米时的油耗最低,则汽车匀速行驶的速度应为()A.60千米/时B.80千米/时C.90千米/时D.100千米/时3.(2018·海林市朝鲜族中学高三课时练习)某商场从生产厂家以每件20元的价格购进一批商品.设该商品零售价定为P元,销售量为Q件,且Q与P有如下关系:Q=8300-170P-P2,则最大毛利润为(毛利润=销售收入-进货支出)( )A.30元B.60元C.28000元D.23000元4.(2018·江西省宜丰中学高三月考(理))表面积为的球内接一个正三棱柱
3、,则此三棱柱体积的最大值为()A.B.6C.D.5.(2019·山东高考模拟(文))在四面体ABCD中,若,则四面体ABCD体积的最大值是 A.B.C.D.6.(2018·海林市朝鲜族中学高二课时练习)已知横梁的强度和它的矩形横断面的长的平方与宽的乘积成正比,要将直径为d的圆木锯成强度最大的横梁,则横断面的长和宽分别为()A.d,dB.d,dC.d,dD.d,d7.(2019·甘肃高考模拟(文))如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与
4、外层圆柱的底面平行,则小圆柱体积的最大值为()A.B.C.D.8.(2018·河北衡水中学高三月考(理))利用一半径为4cm的圆形纸片(圆心为O)制作一个正四棱锥.方法如下:(1)以O为圆心制作一个小的圆;(2)在小的圆内制作一内接正方形ABCD;(3)以正方形ABCD的各边向外作等腰三角形,使等腰三角形的顶点落在大圆上(如图);(4)将正方形ABCD作为正四棱锥的底,四个等腰三角形作为正四棱锥的侧面折起,使四个等腰三角形的顶点重合,问:要使所制作的正四棱锥体积最大,则小圆的半径为A.B.C.D.9.(2018·四川树德中学
5、高三月考(理))已知P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,,点B在AC上的射影为D,则三棱锥体积的最大值为()A.B.C.D.10.(2018·全国高考模拟(理))如图所示,四边形ABCD为边长为2的菱形,∠B=60°,点E,F分别在边BC,AB上运动(不含端点),且EF//AC,沿EF把平面BEF折起,使平面BEF⊥底面ECDAF,当五棱锥B-ECDAF的体积最大时,EF的长为()A.1B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.(20
6、19·江西高三月考(理))已知正方体的棱长为,垂直于棱的截面分别与面对角线相交于点,则四棱锥体积的最大值为________.12.(2018·全国高考模拟(理))有一个容器,下部是高为的圆柱体,上部是与圆柱共底面且母线长为的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为__________.13.(2017·北京高三期中(理))某罐头生产厂计划制造一种圆柱形的密封铁皮罐头盒,其表面积为定值S.若罐头盒的底面半径为,则罐头盒的体积与的函数关系式为________;当________时,罐头盒的体积最大.14.(2018·
7、山东高考模拟(文))如图,圆形纸片的圆心为,半径为,该纸片上的正方形的中心为,为圆上的点,分别是以为底边的等腰三角形,沿虚线剪开后,分别以为折痕折起,使重合得到一个四棱锥,则该四棱锥的体积的最大值为_______.15.(2018·江苏高考模拟)已知边长为2的等边三角形中,、分别为、边上的点,且,将沿折成,使平面平面,则几何体的体积的最大值为__________.(6分)16.(2018·江西高考模拟(文))如图,有一块半径为20米,圆心角的扇形展示台,展示台分成了四个区域:三角形,弓形,扇形和扇形(其中).某次菊花展分别在
8、这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜、朱砂红霜.预计这三种菊花展示带来的日效益分别是:50元/米2,30元/米2,40元/米2.为使预计日总效益最大,的余弦值应等于__________.(6分)17.(2019·河北唐山一中高三月考(文))如图来自古希腊数学家希波克拉底所研究的几何图
此文档下载收益归作者所有