欢迎来到天天文库
浏览记录
ID:59404719
大小:31.00 KB
页数:26页
时间:2020-05-27
《圆锥曲线大题练习题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、圆锥曲线大题练习题注:试题均为历年高考试题和模拟试题,精选其中有代表性的题目。非常适合2013年参加高考的学生和老师复习及冲刺使用。1.已知△ABC的顶点A,B在椭圆x2?3y2?4上,C在直线l:y?x?2上,且AB∥l.当AB边通过坐标原点O时,求AB的长及△ABC的面积;当?ABC?90,且斜边AC的长最大时,求AB所在直线的方程.?0),所以AB所在直线的方程为y?x.解:因为AB∥l,且AB边通过点,.?x2?3y2?4,由?得x??1.y?x?所以AB?1?x2?1AB?h?2.又因为AB边上的高h等于原
2、点到直线l的距离.所以h?S△ABC?设AB所在直线的方程为y?x?m,?x2?3y2?4,22由?得4x?6mx?3m?4?0.?y?x?m因为A,B在椭圆上,所以???12m?64?0.设A,B两点坐标分别为,,23m3m2?4则x1?x2??,x1x2?,24所以AB?1?x2?.又因为BC的长等于点到直线l的距离,即BC?.22所以AC?AB?BC??m?2m?10???11.222所以当m??1时,AC边最长,此时AB所在直线的方程为y?x?1.x2y22.如图,椭圆C:2?2?1的一个焦点为F,且过点.a
3、b求椭圆C的方程;若AB为垂直于x轴的动弦,直线l:x?4与x轴交于点N,直线AF与BN交于点M.求证:点M恒在椭圆C上;求△AMN面积的最大值.222由题设a?2,c?1,从而b?a?c?3.x2y2??1.所以椭圆C的方程为43,0),N,由题意得F,设A,则B?y?0,n?y?0.设M,则有?由②,③得②?n?y0?0,?n?y0?0,③x0?5m?83n,y0?.2m?52m?522x0y023n2由于???2243423n2??4222?12n2?242?36?9m2?42?1.所以点M恒在椭圆C上.x2y
4、2??1得y2?6ty?9?0.设AM的方程为x?ty?1,代入43设A,M,则有:y1?y2??6t?9yy?,.123t2?43t2?4y1?y2?令3t2?4y1?y2?1因为?≥4,0?111≤,所以当?,即??4,t?0时,?4?4y1?y2有最大值3,此时AM过点F.△AMN的面积S△AMN?139FNy1?y2?y1?y2有最大值.223.设椭圆中心在坐标原点,A、B是它的两个顶点,直线y=kx与AB相交于点D,与椭圆相交于E、F两点.若ED=6DF,求k的值;求四边形AEBF面积的最大值。??????
5、?x2?y2?1,2.解:依题设得椭圆的方程为4直线AB,EF的方程分别为x?2y?2,y?kx.···············································分如图,设D,E,F,其中x1?x2,且x1,x2满足方程x?4,故x2??x1?22.①????????15由ED?6DF知x0?x1?6,得x0??x2?;77由D在AB上知x0?2kx0?2,得x0?所以2.1?2k2,?1?2k2化简得24k?25k?6?0,23或k?.·························
6、···················································································分8解法一:根据点到直线的距离公式和①式知,点E,F到AB的距离分别为解得k?h1??h2??.·····································································分又AB??AEBF的面积为S?1AB1??2≤?当2k?1,即当k?1时,上式取等号.所以S的最大值为·········
7、······················12分解法二:由题设,BO?1,AO?2.设y1?kx1,y2?kx2,由①得x2?0,y2??y1?0,故四边形AEBF的面积为S?S△BEF?S△AEF·····························································································································分?x2?2y·???当x2?2y2时,上式取等号.所以S的最大值为··
8、················································12分xy?1所围成的封闭图形的面积为4.已知曲线C1?曲线C1的内切圆半ab径为.记C2为以曲线C1与坐标轴的交点为顶点的椭圆.求椭圆C2的标准方程;设AB是过椭圆C2中心的任意弦,l是线段AB的垂直平分线.M是l上异于椭圆中心的点.若M,当点A在
此文档下载收益归作者所有