欢迎来到天天文库
浏览记录
ID:58994049
大小:287.66 KB
页数:13页
时间:2020-09-16
《中考数学与函数有关的压轴题(选择题2).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、中考数学与函数有关的压轴题(选择题2)13.(2014山东济南,第12题,3分)如图,直线与轴,轴分别交于两点,把沿着直线翻折后得到,则点的坐标是ABOO'xyA. B. C. D.【解析】连接,由直线可知,故,点为点O关于直线的对称点,故,是等边三角形,点的横坐标是长度的一半,纵坐标则是的高3,故选A.14.(2014•四川内江,第12题,3分)如图,已知A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An、An+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、Bn、Bn+1,连接A1
2、B2、B1A2、B2A3、…、AnBn+1、BnAn+1,依次相交于点P1、P2、P3、…、Pn.△A1B1P1、△A2B2P2、△AnBnPn的面积依次记为S1、S2、S3、…、Sn,则Sn为( ) A.B.C.D.考点:一次函数图象上点的坐标特征.专题:规律型.分析:根据图象上点的坐标性质得出点B1、B2、B3、…、Bn、Bn+1各点坐标,进而利用相似三角形的判定与性质得出S1、S2、S3、…、Sn,进而得出答案.解答:解:∵A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An、An+1作x轴
3、的垂线交直线y=2x于点B1、B2、B3、…、Bn、Bn+1,∴B1的横坐标为:1,纵坐标为:2,则B1(1,2),同理可得:B2的横坐标为:2,纵坐标为:4,则B2(2,4),B3(2,6)…∵A1B1∥A2B2,∴△A1B1P1∽△A2B2P1,∴=,∴△A1B1C1与△A2B2C2对应高的比为:1:2,∴A1B1边上的高为:,∴=××2==,同理可得出:=,=,∴Sn=.故选;D.点评:此题主要考查了一次函数函数图象上点的坐标性质得出B点坐标变化规律进而得出S的变化规律,得出图形面积变化规律是解题关键.15.(2014•四川广安,第9题3分)如图,在△ABC中,AC=BC,有
4、一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是( ) A.B.C.D.考点:动点问题的函数图象分析:该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.解答:解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是
5、不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.点评:本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图. 16.(2014•湖北黄石,第10题3分)如图,AB是半圆O的直径,点P从点A出发,沿半圆弧AB顺时针方向匀速移动至点B,运动时间为t,△ABP的面积为S,则下列图象能大致刻画S与t之间的关系的是( ) 第5题图A.B.C.D.考点:动点问题的函数图象.分析:根据点P到AB的距离变化,利用三角形的面积分析解答即可.解答:解:点P在弧AB上运动时,随着时间t的增大,点P到AB的距离先变大,当到达弧AB的中点时,最大,然
6、后逐渐变小,直至到达点B时为0,并且点P到AB的距离的变化不是直线变化,∵AB的长度等于半圆的直径,∴△ABP的面积为S与t的变化情况相同,纵观各选项,只有C选项图象符合.故选C.点评:本题考查了动点问题的函数图象,读懂题目信息,理解△ABP的面积的变化情况与点P到AB的距离的变化情况相同是解题的关键.17.(2014•丽水,第10题3分)如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是( ) A.y=﹣B.y=﹣C.y=﹣D.
7、y=﹣考点:全等三角形的判定与性质;函数关系式;相似三角形的判定与性质..分析:作FG⊥BC于G,依据已知条件求得△DBE≌△EGF,得出FG=BE=x,EG=DB=2x,然后根据平行线的性质即可求得.解答:解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠DBE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,C
此文档下载收益归作者所有