中考数学与圆有关的压轴题

中考数学与圆有关的压轴题

ID:37085880

大小:224.43 KB

页数:12页

时间:2019-05-17

中考数学与圆有关的压轴题_第1页
中考数学与圆有关的压轴题_第2页
中考数学与圆有关的压轴题_第3页
中考数学与圆有关的压轴题_第4页
中考数学与圆有关的压轴题_第5页
资源描述:

《中考数学与圆有关的压轴题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、.中考数学与圆有关的压轴题(解答题部分3)11.(2014•四川成都,第27题10分)如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,=,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)考点:圆的综合题分析:(1)证明相似,思路很常规,就是两个角相等或边长成比例.因为题中因圆周角易知一对相等的角,那么另一对角相等就是我们需要努力的

2、方向,因为涉及圆,倾向于找接近圆的角∠DPF,利用补角在圆内作等量代换,等弧对等角等知识易得∠DPF=∠APC,则结论易证.(2)求PD的长,且此线段在上问已证相似的△PDF中,很明显用相似得成比例,再将其他边代入是应有的思路.利用已知条件易得其他边长,则PD可求.(3)因为题目涉及∠AFD与也在第一问所得相似的△PDF中,进而考虑转化,∠AFD=∠PCA,连接PB得∠AFD=∠PCA=∠PBG,过G点作AB的垂线,若此线过PB与AC的交点那么结论易求,因为根据三角函数或三角形与三角形ABC相似可用AG表示∠PBG所对的这条高线.但是“此线是否过PB与AC的交点”?此时首先需要做的是多画

3、几个动点P,观察我们的猜想.验证得我们的猜想应是正确的,可是证明不能靠画图,如何求证此线过PB与AC的交点是我们解题的关键.常规作法不易得此结论,我们可以换另外的辅助线作法,先做垂线,得交点H,然后连接交点与B,再证明∠HBG=∠PCA=∠AFD.因为C、D关于AB对称,可以延长CG考虑P点的对称点.根据等弧对等角,可得∠HBG=∠PCA,进而得解题思路.解答:(1)证明:∵,∴∠DPF=180°﹣∠APD=180°﹣所对的圆周角=180°﹣..所对的圆周角=所对的圆周角=∠APC.在△PAC和△PDF中,,∴△PAC∽△PDF.(2)解:如图1,连接PO,则由,有PO⊥AB,且∠PAB

4、=45°,△APO、△AEF都为等腰直角三角形.在Rt△ABC中,∵AC=2BC,∴AB2=BC2+AC2=5BC2,∵AB=5,∴BC=,∴AC=2,∴CE=AC•sin∠BAC=AC•=2•=2,AE=AC•cos∠BAC=AC•=2•=4,∵△AEF为等腰直角三角形,∴EF=AE=4,∴FD=FC+CD=(EF﹣CE)+2CE=EF+CE=4+2=6.∵△APO为等腰直角三角形,AO=•AB=,∴AP=.∵△PDF∽△PAC,∴,∴,∴PD=...(3)解:如图2,过点G作GH⊥AB,交AC于H,连接HB,以HB为直径作圆,连接CG并延长交⊙O于Q,∵HC⊥CB,GH⊥GB,∴C、

5、G都在以HB为直径的圆上,∴∠HBG=∠ACQ,∵C、D关于AB对称,G在AB上,∴Q、P关于AB对称,∴,∴∠PCA=∠ACQ,∴∠HBG=∠PCA.∵△PAC∽△PDF,∴∠PCA=∠PFD=∠AFD,∴y=tan∠AFD=tan∠PCA=tan∠HBG=.∵HG=tan∠HAG•AG=tan∠BAC•AG==,∴y==x.点评:本题考查了圆周角、相似三角形、三角函数等性质,前两问思路还算简单,但最后一问需要熟练的解题技巧需要长久的磨练总结.总体来讲本题偏难,学生练习时加强理解,重点理解分析过程,自己如何找到思路. 12.(2014•湖北荆门,第24题12分)如图①,已知:在矩形AB

6、CD的边AD上有一点O,OA=,以O为圆心,OA长为半径作圆,交AD于M,恰好与BD相切于H,过H作弦HP∥AB,弦HP=3.若点E是CD边上一动点(点E与C,D不重合),过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C的对应点为G.设CE=x,△EFG与矩形ABCD重叠部分的面积为S.(1)求证:四边形ABHP是菱形;(2)问△EFG的直角顶点G能落在⊙O上吗?若能,求出此时x的值;若不能,请说明理由;(3)求S与x之间的函数关系式,并直接写出FG与⊙O相切时,S的值...第3题图考点:圆的综合题;含30度角的直角三角形;菱形的判定;矩形的性质;垂径定理;切线的性质

7、;切线长定理;轴对称的性质;特殊角的三角函数值所有专题:压轴题.分析:(1)连接OH,可以求出∠HOD=60°,∠HDO=30°,从而可以求出AB=3,由HP∥AB,HP=3可证到四边形ABHP是平行四边形,再根据切线长定理可得BA=BH,即可证到四边形ABHP是菱形.(2)当点G落到AD上时,可以证到点G与点M重合,可求出x=2.(3)当0≤x≤2时,如图①,S=S△EGF,只需求出FG,就可得到S与x之间的函数关系式;当2<x≤

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。