第四章弯曲应力答辩ppt课件.ppt

第四章弯曲应力答辩ppt课件.ppt

ID:58670461

大小:1.61 MB

页数:65页

时间:2020-10-05

第四章弯曲应力答辩ppt课件.ppt_第1页
第四章弯曲应力答辩ppt课件.ppt_第2页
第四章弯曲应力答辩ppt课件.ppt_第3页
第四章弯曲应力答辩ppt课件.ppt_第4页
第四章弯曲应力答辩ppt课件.ppt_第5页
资源描述:

《第四章弯曲应力答辩ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第四章弯曲应力§4-1对称弯曲的概念及梁的计算简图§4-2梁的剪力和弯矩·剪力图和弯矩图§4-3平面刚架和曲杆的内力图§4-4梁横截面上的正应力·梁的正应力强度条件§4-5梁横截面上的切应力·梁的切应力强度条件§4-6梁的合理设计理解重、难点理解重、难点重、难点掌握1mmFSM一、弯曲构件横截面上的应力当梁上有横向外力作用时,一般情况下,梁的横截面上既有弯矩M,又有剪力FS.mmFSmmM弯矩M正应力σ只有与正应力有关的法向内力元素dFN=dA才能合成弯矩剪力FS切应力τ内力只有与切应力有关的切向内力元素

2、dFS=dA才能合成剪力所以,在梁的横截面上一般既有正应力,又有切应力。§4-4梁横截面上的正应力·梁的正应力强度条件二、分析方法(Analysismethod)平面弯曲时横截面纯弯曲梁(横截面上只有M而无FS的情况)平面弯曲时横截面横力弯曲(横截面上既有FS又有M的情况)sts简支梁CD段任一横截面上,剪力等于零,而弯矩为常量,所以该段梁的弯曲就是纯弯曲。三、纯弯曲(Purebending)FFaaCD+-FF+ABFaFadeformationgeometricrelationshipExaminethe

3、deformation,thenproposethehypothesisDistributionregularityofdeformationDistributionregularityofstressEstablishtheformula变形几何关系物理关系静力关系观察变形,提出假设变形的分布规律应力的分布规律建立公式physicalrelationshipstaticrelationshipⅠ.纯弯曲时梁横截面上的正应力(Normalstressesinpurebeams)一、实验(Experiment)1

4、、变形现象(Deformationphenomenon)纵向线各纵向线段弯成弧线,且靠近顶端的纵向线缩短,靠近底端的纵向线段伸长。各横向线仍保持为直线,相对转过了一个角度,仍与变形后的纵向弧线垂直横向线2、提出假设(Assumptions)平面假设变形前为平面的横截面变形后仍保持为平面且垂直于变形后的梁轴线(b)单向受力假设纵向纤维不相互挤压,只受单向拉压推论:必有一层变形前后长度不变的纤维——中性层(Neutralsurface)中性轴横截面对称轴中性轴横截面对称轴⊥中性层观察变形提出假设变形的分布规律变形几

5、何关系物理关系静力关系应力的分布规律建立公式实验平面假设单向受力假设中性层、中性轴直梁纯弯曲时纵向纤维的应变与它到中性层的距离成正比。应变分布规律研究横截面上距中性轴为y处的纵向线应变二、变形几何关系(Deformationgeometricrelation)观察变形提出假设变形的分布规律变形几何关系物理关系静力关系应力的分布规律建立公式实验平面假设单向受力假设中性层、中性轴三、物理关系(Physicalrelationship)所以Hooke’sLawMyzOx直梁纯弯曲时横截面上的正应力,沿梁的宽度方向均匀

6、分布,沿梁的高度方向线性分布。中性轴是拉压应力的分界线。应力分布规律?待解决问题中性轴的位置中性层的曲率半径ρ??观察变形提出假设变形的分布规律变形几何关系物理关系静力关系应力的分布规律建立公式实验平面假设单向受力假设中性层、中性轴yzxOMdA四、静力关系(Staticrelationship)中性层的曲率半径ρ中性轴的位置待解决问题FNMzMy内力与外力相平衡可得(1)(2)(3)将应力表达式代入(1)式,得将应力表达式代入(2)式,得将应力表达式代入(3)式,得中性轴通过横截面形心自然满足观察变形提出假设

7、变形的分布规律变形几何关系物理关系静力关系应力的分布规律建立公式实验平面假设单向受力假设中性层、中性轴中性轴过横截面形心纯弯曲时横截面上正应力的计算公式:M为梁横截面上的弯矩y为梁横截面上任意一点到中性轴的距离Iz为梁横截面对中性轴的惯性矩讨论(1)应用公式时,一般将M,y以绝对值代入.根据梁变形的情况直接判断的正负号.以中性轴为界,梁变形后凸出边的应力为拉应力(为正号).凹入边的应力为压应力(为负号).(2)最大正应力发生在横截面上离中性轴最远的点处则公式改写为引用记号——抗弯截面系数(1)当中性轴为对

8、称轴时矩形截面实心圆截面空心圆截面bhzyzdyzDdyzy(2)对于中性轴不是对称轴的横截面应分别以横截面上受拉和受压部分距中性轴最远的距离和直接代入公式求得相应的最大正应力(3)型钢截面及其几何性质:参见型钢表需要注意的是,型钢规格表中所示的x轴是我们所标示的z轴。当梁上有横向力作用时,横截面上既有弯矩又有剪力.梁在此种情况下的弯曲称为横力弯曲。横力弯曲时,梁的横截面上既有正应力又

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。