成都中考B卷分类突破专题:几何综合(含解析)难题一诊二诊.docx

成都中考B卷分类突破专题:几何综合(含解析)难题一诊二诊.docx

ID:57332648

大小:468.95 KB

页数:32页

时间:2020-08-12

成都中考B卷分类突破专题:几何综合(含解析)难题一诊二诊.docx_第1页
成都中考B卷分类突破专题:几何综合(含解析)难题一诊二诊.docx_第2页
成都中考B卷分类突破专题:几何综合(含解析)难题一诊二诊.docx_第3页
成都中考B卷分类突破专题:几何综合(含解析)难题一诊二诊.docx_第4页
成都中考B卷分类突破专题:几何综合(含解析)难题一诊二诊.docx_第5页
资源描述:

《成都中考B卷分类突破专题:几何综合(含解析)难题一诊二诊.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、成都中考B卷分类突破专题:几何综合1.(2018•温江区模拟)在四边形ABCD中,点E为AB边上一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形;①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE、DF,猜想AE与DF的数量关系并说明理由;(2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图3中画出草图,并求出AE′与DF′的数量关系.2.(2018•成都模拟)如图,在Rt△ABC中,AB=AC,点D为AC延长线

2、上一点,连接BD,过A作AM⊥BD,垂足为M,交BC于点N(1)如图1,若∠ADB=30°,BC=3,求AM的长;(2)如图2,点E在CA的延长线上,且AE=CD,连接EN并延长交BD于点F,求证:EF=FD;(3)在(2)的条件下,当AE=AC时,请求出的值.3.(2018•青羊区模拟)如图,已知一个三角形纸片ACB,其中∠ACB=90°,AC=8,BC=6,E、F分别是AC、AB边上的点,连接EF.(1)如图1,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=4S△EDF,求ED的长;(2)如图2,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边

3、上的点M处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图3,若FE的延长线与BC的延长线交于点N,CN=2,CE=,求的值.4.(2017•菏泽)正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AF=MN;(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以cm/s的速度沿BD向点D运动,运动时间为ts.①设BF=ycm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的

4、长.5.(2018•青羊区模拟)在矩形ABCD中,AB=8,AD=12,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN⊥PQ交射线BC于N点.(1)若点N在BC边上时,如图:①求证:∠NPQ=∠PQN;②请问是否为定值?若是定值,求出该定值;若不是,请举反例说明;(2)当△PBN与△NCQ的面积相等时,求AP的值.6.(2018•成华区模拟)如图,在△ABC中,∠ACB=90°,AC=BC,CD是中线,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为E、F,DF与AC交于点M,DE与BC交于点N.(1)如

5、图1,若CE=CF,求证:DE=DF(2)如图2,在∠EDF绕点D旋转的过程中,①求证:AB2=4CE•CF②若CE=8,CF=4,求DN的长.7.(2018•金牛区模拟)如图1,已知△ABC中,∠ABC=45°,点E为AC上的一点,连接BE,在BC上找一点G,使得AG=AB,AG交BE于K.(1)若∠ABE=30°,且∠EBC=∠GAC,BK=6,求EK的长度.(2)如图2,过点A作DA⊥AE交BE于点D,过D.E分别向AB所在的直线作垂线,垂足分别为点M、N,且NE=AM,若D为BE的中点,证明:(3)如图3,将(2)中的条件“若D为BE的中点”改为“若(n是大于2的整数)”,其他条件不

6、变,请直接写出的值.8.(2018•成都模拟)【问题背景】在平行四边形ABCD中,∠BAD=120°,AD=nAB,现将一块含60°的直角三角板(如图)放置在平行四边形ABCD所在平面内旋转,其60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).【发现】如图1,当n=1时,易证得AE+AF=AC;【类比】如图2,过点C作CH⊥AD于点H,(1)当n=2时,求证:AE=2FH;(2)当n=3时,试探究AE+3AF与AC之间的等量关系式;【延伸】将60°角的顶点移动到平行四边形ABCD对角线AC上的任意点Q,其余条件均不变,试探究:AE

7、、AF、AQ之间的等量关系式(请直接写出结论).参考答案与解析1.(2018•温江区模拟)在四边形ABCD中,点E为AB边上一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形;①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE、DF,猜想AE与DF的数量关系并说明理由;(2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。