2019届中考数学专题复习圆讲义课件.ppt

2019届中考数学专题复习圆讲义课件.ppt

ID:57222214

大小:13.20 MB

页数:28页

时间:2020-08-04

2019届中考数学专题复习圆讲义课件.ppt_第1页
2019届中考数学专题复习圆讲义课件.ppt_第2页
2019届中考数学专题复习圆讲义课件.ppt_第3页
2019届中考数学专题复习圆讲义课件.ppt_第4页
2019届中考数学专题复习圆讲义课件.ppt_第5页
资源描述:

《2019届中考数学专题复习圆讲义课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.圆的定义:平面上到定点的距离等于定长的所有点所组成的图形叫做圆;其中定点称为圆心,定长称为半径。2.圆有对称性(1)圆是轴对称图形,其对称轴是直径所在的直线;对称轴有无数多条。(2)圆是中心对称图形,对称中心是圆心。(3)圆具有旋转不变性。3.圆中的有关概念:(1)弦:连结圆上任意两点间的线段叫做弦,经过圆心的弦是直径.(2)弧:圆上任意两点间的部分叫做弧;大于半圆的弧叫优弧;小于半圆的弧叫做劣弧。半圆也是弧.(3)等弧:在同或等圆中,能够完全重合的弧叫等弧。4.圆心角、弧、弦三者之间的关系:(1).在同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等;(2).在

2、同圆或等圆中,相等的弦所对的圆心角相等,圆心角所对的弧也相等;(3).相等的弧所对的圆心角相等,所对的弦相等.(三者知一得二)5.圆周角定理及推论同弧或等弧所对的圆周角等于它所对圆心角的一半,同弧或等弧所对的圆周角相等.半圆或直径所对的圆周角相等,都等于90度;90度的圆周角所对的弦是直径;所对的弧是半圆.一、垂径定理●OABCDM└③AM=BM,重视:模型“垂径定理直角三角形”若①CD是直径②CD⊥AB可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.1.定理垂直于弦的直径平分弦,并且平分弦所的两条弧.2、垂径定理的推论②CD⊥AB,由①CD是直径③AM=BM可推得⌒⌒④AC

3、=BC,⌒⌒⑤AD=BD.●OCD●MAB┗平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.注意:“直径平分弦则垂直弦.”这句话对吗?()错●OABCD1.两条弦在圆心的同侧●OABCD2.两条弦在圆心的两侧例⊙O的半径为10cm,弦AB∥CD,AB=16,CD=12,则AB、CD间的距离是___.2cm或14cm在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等.●OAB┓DA′B′D′┏如由条件:②AB=A′B′⌒⌒③AB=A′B′④OD=O′D′可推出①∠AOB=∠A′O′B′二、圆心

4、角、弧、弦、弦心距的关系7三、圆周角定理及推论90°的圆周角所对的弦是.●OABC●OBACDE●OABC定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这弧所对的圆心角的一半.推论:直径所对的圆周角是.直角直径判断:(1)相等的圆心角所对的弧相等.(2)相等的圆周角所对的弧相等.(3)等弧所对的圆周角相等.(×)(×)(√)1、如图1,AB是⊙O的直径,C为圆上一点,弧AC度数为60°,OD⊥BC,D为垂足,且OD=10,则AB=_____,BC=________;2、如图2,⊙O中弧AB的度数为60°,AC是⊙O的直径,那么∠OBC等于();A.15°B.4

5、5°C.30°D.60°3、在△ABC中,∠A=70°,若O为△ABC的外心,∠BOC=;若O为△ABC的内心,∠BOC=.图1图240c140°125°练习检测.p.or.o.p.o.p四、点和圆的位置关系Op<r点p在⊙o内Op=r点p在⊙o上Op>r点p在⊙o外不在同一直线上的三个点确定一个圆(这个三角形叫做圆的内接三角形,这个圆叫做三角形的外接圆,圆心叫做三角形的外心)圆内接四边形的性质:(1)对角互补;(2)任意一个外角都等于它的内对角反证法的三个步骤:1、提出假设2、由题设出发,引出矛盾3、由矛盾判定假设不成立,肯定结论正确1、⊙O的半径为R,圆心到点A的距

6、离为d,且R、d分别是方程x-6x+8=0的两根,则点A与⊙O的位置关系是()A.点A在⊙O内部B.点A在⊙O上C.点A在⊙O外部D.点A不在⊙O上2、M是⊙O内一点,已知过点M的⊙O最长的弦为10cm,最短的弦长为8cm,则OM=_____cm.3、圆内接四边形ABCD中,∠A∶∠B∶∠C∶∠D可以是()A、1∶2∶3∶4B、1∶3∶2∶4C、4∶2∶3∶1D、4∶2∶1∶32D3D练习检测1、直线和圆相交dr;dr;2、直线和圆相切3、直线和圆相离dr.五.直线与圆的位置关系●O●O相交●O相切相离rrr┐dd┐d┐<=>切线的判定定理定理经过半径的外端,并且垂直

7、于这条半径的直线是圆的切线.CD●OA如图∵OA是⊙O的半径,且CD⊥OA,∴CD是⊙O的切线.切线的判定定理的两种应用1、如果已知直线与圆有交点,往往要作出过这一点的半径,再证明直线垂直于这条半径即可;2、如果不明确直线与圆的交点,往往要作出圆心到直线的垂线段,再证明这条垂线段等于半径即可.1、两个同心圆的半径分别为3cm和4cm,大圆的弦BC与小圆相切,则BC=_____cm;2、如图2,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,设AB=12,则两圆构成圆环面积为_____;3、下列四个命题中正确的是()①与圆有

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。