欢迎来到天天文库
浏览记录
ID:57197924
大小:1.36 MB
页数:65页
时间:2020-08-03
《互相关函数频率域描述课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、信号及其描述信号的分类与定义随机信号与确定性信号连续信号与离散信号周期信号与非周期信号主要内容确定性信号的特性时间特性频率特性时间与频率的联系确定性信号分析时域分析频域分析随机信号特性及分析信号是信息的载体和具体表现形式,信息需转化为传输媒质能够接受的信号形式方能传输。广义的说,信号是随着时间变化的某种物理量。只有变化的量中,才可能含有信息。确定信号与随机信号当信号是一确定的时间函数时,给定某一时间值,就可以确定一相应的函数值。这样的信号称为确定信号。随机信号不是确定的时间函数,只知道该信号
2、取某一数值的概率。带有信息的信号往往具有不可预知的不确定性,是一种随机信号。除实验室发生的有规律的信号外,通常的信号都是随机的,因为确定信号对受信者不可能载有信息。连续信号与离散信号如果在某一时间间隔内,对于一切时间值,除若干不连续点外,该函数都能给出确定的函数值,此信号称为连续信号。和连续信号相对应的是离散信号。代表离散信号的时间函数只在某些不连续的时间值上给定函数值。一般而言,模拟信号是连续的(时间和幅值都是连续的),数字信号是离散的。连续信号模拟信号连续信号f(t)0t0tf(t)f0f1f2离散信
3、号01234-1tf(tk)(3)(2)(4.5)(1.5)(6)(-1)周期信号与非周期信号用确定的时间函数表示的信号,可以分为周期信号和非周期信号。当且仅当则信号f(t)是周期信号,式中常数T是信号的周期。换言之,周期信号是每隔固定的时间又重现本身的信号,该固定的时间间隔称为周期。非周期信号无此固定时间长度的循环周期。严格数学意义上的周期信号,是无始无终地重复着某一变化规律的信号。实际应用中,周期信号只是指在较长时间内按照某一规律重复变化的信号。实际上周期信号与非周期信号之间没有绝对的差别,当周期信号f
4、T(t)的周期T无限增大时,则此信号就转化为非周期信号f(t)。即确定信号的时间特性表示信号的时间函数,包含了信号的全部信息量,信号的特性首先表现为它的时间特性。时间特性主要指信号随时间变化快慢、幅度变化的特性。同一形状的波形重复出现的周期长短信号波形本身变化的速率(如脉冲信号的脉冲持续时间及脉冲上升和下降边沿陡直的程度)以时间函数描述信号的图象称为时域图,在时域上分析信号称为时域分析。确定信号的频率特性信号还具有频率特性,可用信号的频谱函数来表示。在频谱函数中,也包含了信号的全部信息量。频谱函数表征信号的
5、各频率成分,以及各频率成分的振幅和相位。频谱:对于一个复杂信号,可用傅立叶分析将它分解为许多不同频率的正弦分量,而每一正弦分量则以它的振幅和相位来表征。将各正弦分量的振幅与相位分别按频率高低次序排列成频谱。频带:复杂信号频谱中各分量的频率理论上可扩展至无限,但因原始信号的能量一般集中在频率较低范围内,在工程应用上一般忽略高于某一频率的分量。频谱中该有效频率范围称为该信号的频带。以频谱描述信号的图象称为频域图,在频域上分析信号称为频域分析。时域和频域时域特性与频域特性的联系信号的频谱函数和信号的时间函数既然都
6、包含了信号的全部信息量,都能表示出信号的特点,那么,信号的时间特性与频率特性必然具有密切联系。例:周期性脉冲信号的重复周期的倒数就是该信号的基波频率,周期的大或小分别对应着低的或高的基波和谐波频率;信号分析中将进一步揭示两者的关系。不同频率信号的时域图和频域图信号还可以用它的能量特点加以区分。在一定的时间间隔内,把信号施加在一负载上,负载上就消耗一定的信号能量。把该能量值对于时间间隔取平均,得到该时间内信号的平均功率。如果时间间隔趋于无穷大,将产生两种情况。信号总能量为有限值而信号平均功率为零,称为能量信号
7、;考察信号能量在时域和频域中的表达式,非周期的单脉冲信号就是常见的能量信号;信号平均功率为大于零的有限值而信号总能量为无穷大,称为功率信号,考察信号功率在时域和频域中的表达式。周期信号就是常见的功率信号。信号分析时域分析信号时域分析(线性系统叠加原理)卷积积分的应用及其数学描述频域分析周期信号的频域分析(三角与指数傅立叶级数)非周期信号的频域分析(傅立叶积分)信号在频域与时域之间的变换(正反傅立叶变换式)频谱与时间函数的关系时域分析系统的输入信号称为激励,输出称为响应激励与响应都是时间的函数激励函数s(t)
8、响应函数r(t)系统对激励的的响应称为冲激响应函数h(t)对激励的响应是激励函数与系统冲激响应函数的卷积时域分析的方法(1)利用线性系统的叠加原理,把复杂的激励在时域中分解成一系列单位激励信号,然后分别计算各单位激励通过通信系统的响应,最后在输出端叠加而得到总的响应。图2-4是时域分析法示意图。其中(a)表示将激励函数分解为若干个脉冲函数,第k个脉冲函数值为s(kΔt)(b)表示系统对第k个脉冲的冲激响应,该响应
此文档下载收益归作者所有