资源描述:
《大学高数课件D3_5极值与最值.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二、最大值与最小值问题一、函数的极值及其求法第五节机动目录上页下页返回结束函数的极值与最大值最小值第三章一、函数的极值及其求法定义:在其中当时,(1)则称为的极大点,称为函数的极大值;(2)则称为的极小点,称为函数的极小值.极大点与极小点统称为极值点.机动目录上页下页返回结束注意:为极大点为极小点不是极值点2)对常见函数,极值可能出现在导数为0或不存在的点.1)函数的极值是函数的局部性质.例如为极大点,是极大值是极小值为极小点,机动目录上页下页返回结束定理1(极值第一判别法)且在空心邻域内有导数,(1)“左正右负”,(2)“左负右正”,(自证)机动目录上页下页返回结束点击图
2、中任意处动画播放暂停例1.求函数的极值.解:1)求导数2)求极值可疑点令得令得3)列表判别是极大点,其极大值为是极小点,其极小值为机动目录上页下页返回结束定理2(极值第二判别法)二阶导数,且则在点取极大值;则在点取极小值.证:(1)存在由第一判别法知(2)类似可证.机动目录上页下页返回结束例2.求函数的极值.解:1)求导数2)求驻点令得驻点3)判别因故为极小值;又故需用第一判别法判别.机动目录上页下页返回结束二、最大值与最小值问题则其最值只能在极值点或端点处达到.求函数最值的方法:(1)求在内的极值可疑点(2)最大值最小值机动目录上页下页返回结束特别:当在内只有一个极值可
3、疑点时,当在上单调时,最值必在端点处达到.若在此点取极大值,则也是最大值.(小)对应用问题,有时可根据实际意义判别求出的可疑点是否为最大值点或最小值点.(小)机动目录上页下页返回结束例3.求函数在闭区间上的最大值和最小值.解:显然且故函数在取最小值0;在及取最大值5.机动目录上页下页返回结束(k为某一常数)例4.铁路上AB段的距离为100km,工厂C距A处20AC⊥AB,要在AB线上选定一点D向工厂修一条已知铁路与公路每公里货运价之比为3:5,为使货D点应如何选取?20解:设则令得又所以为唯一的极小点,故AD=15km时运费最省.总运费物从B运到工厂C的运费最省,从而为最小
4、点,问Km,公路,机动目录上页下页返回结束例5.把一根直径为d的圆木锯成矩形梁,问矩形截面的高h和b应如何选择才能使梁的抗弯截面模量最大?解:由力学分析知矩形梁的抗弯截面模量为令得从而有即由实际意义可知,所求最值存在,驻点只一个,故所求结果就是最好的选择.机动目录上页下页返回结束内容小结1.连续函数的极值(1)极值可疑点:使导数为0或不存在的点(2)第一充分条件过由正变负为极大值过由负变正为极小值(3)第二充分条件为极大值为极小值定理3目录上页下页返回结束最值点应在极值点和边界点上找;应用题可根据问题的实际意义判别.思考与练习2.连续函数的最值1.设则在点a处().的导数存
5、在,取得极大值;取得极小值;的导数不存在.B提示:利用极限的保号性.机动目录上页下页返回结束2.设在的某邻域内连续,且则在点处(A)不可导;(B)可导,且(C)取得极大值;(D)取得极小值.D提示:利用极限的保号性.机动目录上页下页返回结束3.设是方程的一个解,若且则在(A)取得极大值;(B)取得极小值;(C)在某邻域内单调增加;(D)在某邻域内单调减少.提示:A机动目录上页下页返回结束试问为何值时,在时取得极值,还是极小.解:由题意应有又取得极大值为备用题1.求出该极值,并指出它是极大机动目录上页下页返回结束试求解:2.机动目录上页下页返回结束故所求最大值为