高中数学 函数的概念教案1 新人教版必修.doc

高中数学 函数的概念教案1 新人教版必修.doc

ID:56676611

大小:165.50 KB

页数:2页

时间:2020-07-04

高中数学 函数的概念教案1 新人教版必修.doc_第1页
高中数学 函数的概念教案1 新人教版必修.doc_第2页
资源描述:

《高中数学 函数的概念教案1 新人教版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:函数的概念(一)课型:新授课教学目标:(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的三要素;(3)能够正确使用“区间”的符号表示某些集合。教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数。教学难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。教学过程:一、复习准备:1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x和y,对于x的每一个确定的值,y都

2、有唯一的值与之对应,此时y是x的函数,x是自变量,y是因变量。表示方法有:解析法、列表法、图象法.二、讲授新课:(一)函数的概念:思考1:(课本P15)给出三个实例:A.一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是。B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。(见课本P15图)C.国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。“八五”计划以来我们城镇居民的恩格尔

3、系数如下表。(见课本P16表)讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着怎样的对应关系?三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为:对于数集A中的每一个x,按照某种对应关系f,在数集B中都与唯一确定的y和它对应,记作:函数的定义:设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数和它对应,那么称为从集合A到集合B的一个函数(function),记作:其中,x叫自变量,x的取值范围A叫作定义域(dom

4、ain),与x的值对应的y值叫函数值,函数值的集合叫值域(range)。显然,值域是集合B的子集。(1)一次函数y=ax+b(a≠0)的定义域是R,值域也是R;(2)二次函数(a≠0)的定义域是R,值域是B;当a>0时,值域;当a﹤0时,值域。(3)反比例函数的定义域是,值域是。(二)区间及写法:设a、b是两个实数,且a

5、a和b都叫做相应区间的端点。(数轴表示见课本P17表格)符号“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”。我们把满足的实数x的集合分别表示为。巩固练习:用区间表示R、{x

6、x≥1}、{x

7、x>5}、{x

8、x≤-1}、{x

9、x<0}(学生做,教师订正)(三)例题讲解:例1.已知函数,求f(0)、f(1)、f(2)、f(-1)的值。变式:求函数的值域例2.已知函数,(1)求的值;(2)当a>0时,求的值。(四)课堂练习:1.用区间表示下列集合:2.已知函数f(x)=3x+5x-2,求f(3)、f

10、(-)、f(a)、f(a+1)的值;3.课本P19练习2。归纳小结:函数模型应用思想;函数概念;二次函数的值域;区间表示作业布置:习题1.2A组,第4,5,6;课后记

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。